积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(88)Apache Kyuubi(36)Pandas(29)机器学习(13)Hadoop(3)Apache Karaf(3)Kubernetes(1)RocketMQ(1)Apache APISIX(1)Harbor(1)

语言

全部英语(77)中文(简体)(9)中文(繁体)(1)中文(简体)(1)

格式

全部PDF文档 PDF(70)其他文档 其他(18)
 
本次搜索耗时 0.015 秒,为您找到相关结果约 88 个.
  • 全部
  • 云计算&大数据
  • Apache Kyuubi
  • Pandas
  • 机器学习
  • Hadoop
  • Apache Karaf
  • Kubernetes
  • RocketMQ
  • Apache APISIX
  • Harbor
  • 全部
  • 英语
  • 中文(简体)
  • 中文(繁体)
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 其他文档 其他
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 5 - Advanced Compression Techniques

    performance tradeoff. Next, the chapter goes over weight sharing using clustering. Weight sharing, and in particular clustering is a generalization of quantization. If you noticed, quantization ensures range. It creates equal sized quantization ranges (bins), regardless of the frequency of data. Clustering helps solve that problem by adapting the allocation of precision to match the distribution of the started to combine these two forms to achieve both accuracy and latency gains. Weight Sharing using Clustering Recall that in quantization, we divided the original floating point domain between and into non-overlapping
    0 码力 | 34 页 | 3.18 MB | 1 年前
    3
  • pdf文档 Lecture 7: K-Means

    / 46 Outline 1 Clustering 2 K-Means Method 3 K-Means Optimization Problem 4 Kernel K-Means 5 Hierarchical Clustering Feng Li (SDU) K-Means December 28, 2021 2 / 46 Clustering Usually an unsupervised labels A good clustering is one that achieves: High within-cluster similarity Low inter-cluster similarity Feng Li (SDU) K-Means December 28, 2021 3 / 46 Similarity can be Subjective Clustering only looks important in clustering Also important to define/ask: “Clustering based on what”? Feng Li (SDU) K-Means December 28, 2021 4 / 46 Clustering: Some Examples Document/Image/Webpage Clustering Image Segmentation
    0 码力 | 46 页 | 9.78 MB | 1 年前
    3
  • pdf文档 Lecture 1: Overview

    Discovering Clusters Feng Li (SDU) Overview September 6, 2023 29 / 57 Unsupervised Learning: Clustering (Contd.) Feng Li (SDU) Overview September 6, 2023 30 / 57 Unsupervised Learning: Discovering required compared to supervised learning. At the same time, improving the results of unsupervised clustering to the expectations of the user. With lots of unlabeled data the decision boundary becomes apparent Constrained Clustering Distance Metric Learning Manifold based Learning Sparsity based Learning (Compressed Sensing) Feng Li (SDU) Overview September 6, 2023 40 / 57 Constrained Clustering When we have
    0 码力 | 57 页 | 2.41 MB | 1 年前
    3
  • pdf文档 机器学习课程-温州大学-10机器学习-聚类

    与此不同的是,在无监督学习中,我们的数据没有附带任何标签?,无 监督学习主要分为聚类、降维、关联规则、推荐系统等方面。 监督学习和无监督学习的区别 5 1.无监督学习方法概述 ✓ 聚类(Clustering) ✓ 如何将教室里的学生按爱好、身高划分为5类? ✓ 降维( Dimensionality Reduction ) ✓ 如何将将原高维空间中的数据点映射到低维度的空间中? ✓ 关联规则( 内,那么集合 S 称为凸集。反之,为非凸集。 29 密度聚类-DBSCAN DBSCAN密度聚类 与划分和层次聚类方法不同,DBSCAN(Density-Based Spatial Clustering of Applications with Noise)是一个比较有代表性的基于密度的聚类算法。它将簇 定义为密度相连的点的最大集合,能够把具有足够高密度的区域划分为簇,并 可在噪声的空间数据库中发现任意形状的聚类。 类结果与真实情况越吻合。从广义的角度 来讲,ARI衡量的是两个数据分布的吻合 程度 46 参考文献 [1] Wong J A H A . Algorithm AS 136: A K-Means Clustering Algorithm[J]. Journal of the Royal Statistical Society, 1979, 28(1):100-108. [2] Ester M . A
    0 码力 | 48 页 | 2.59 MB | 1 年前
    3
  • pdf文档 Apache Karaf Cellar 3.x Documentation

    See the [Transport and DOSGi] section of the user guide. Finally, Cellar also provides "runtime clustering" by providing dedicated feature like: • HTTP load balancing • HTTP sessions replication • log |grep -i cellar cellar-core | 3.0.3 | | karaf-cellar-3.0.3 | Karaf clustering core hazelcast | 3.4.2 | | karaf-cellar-3.0.3 | In memory data shell support cellar | 3.0.3 | | karaf-cellar-3.0.3 | Karaf clustering cellar-dosgi | 3.0.3 | | karaf-cellar-3.0.3 | DOSGi support cellar-obr
    0 码力 | 34 页 | 157.07 KB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 7 - Automation

    between quantization and clustering, which one is preferable? What is the performance impact when both are used together? We have four options: none, quantization, clustering, and both. We would need to for choosing quantization and/or clustering techniques for model optimization. We have a search space which has two boolean valued parameters: quantization and clustering. A $$True$$ value means that the
    0 码力 | 33 页 | 2.48 MB | 1 年前
    3
  • pdf文档 《TensorFlow 快速入门与实战》7-实战TensorFlow人脸识别

    Kalenichenko, D. and Philbin, J., 2015. Facenet: A unified embedding for face recognition and clustering. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 815-823) Schroff, Dmitry Kalenichenko, James Philbin. FaceNet: A unified embedding for face recognition and clustering. 2015, computer vision and pattern recognition. Facebook DeepFace �������� �e��m�o�p��ruE��i��9������ Schroff, Dmitry Kalenichenko, James Philbin. FaceNet: A unified embedding for face recognition and clustering. 2015, computer vision and pattern recognition. �������� �������� �� API – �AI���� �� API –
    0 码力 | 81 页 | 12.64 MB | 1 年前
    3
  • pdf文档 Apache Karaf Cellar 4.x - Documentation

    See the transport and DOSGi section of the user guide. Finally, Cellar also provides "runtime clustering" by providing dedicated feature like: * HTTP load balancing * HTTP sessions replication * log add/remove any PID he wishes to the whitelist/blacklist. 3. The role of Hazelcast The idea behind the clustering engine is that for each unit that we want to replicate, we create an event, broadcast the event configuration is required. • No single point of failure ◦ No server or master is required for clustering ◦ The shared resource is distributed, hence we introduce no single point of failure. • Provides
    0 码力 | 39 页 | 177.09 KB | 1 年前
    3
  • pdf文档 MATLAB与Spark/Hadoop相集成:实现大数据的处理和价值挖

    scatter ▪ binscatter ▪ histogram ▪ histogram2 ▪ ksdensity 15 tall 支持的大数据机器学习算法 – K-means Clustering (kmeans) – Linear Regression (fitlm) – Logistic & Generalized Linear Regression (fitglm) – Discriminant
    0 码力 | 17 页 | 1.64 MB | 1 年前
    3
  • pdf文档 CNCF Harbor Webinar 2020

    Caching of upstream repos (e.g., DockerHub) • Token-based auth • Image scanning improvements • Clustering – local and remote • Increase scalability • Improved RBAC • Improved multi-tenancy • harborctl
    0 码力 | 39 页 | 2.39 MB | 1 年前
    3
共 88 条
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 9
前往
页
相关搜索词
EfficientDeepLearningBookEDLChapterAdvancedCompressionTechniquesLectureMeansOverview机器学习课程温州大学10聚类ApacheKarafCellarDocumentationAutomationTensorFlow快速入门实战人脸识别人脸识别MATLABSparkHadoop集成实现数据处理价值CNCFHarborWebinar2020
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩