积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(246)VirtualBox(112)Apache Kyuubi(44)Pandas(32)机器学习(16)OpenShift(16)rancher(7)Apache Flink(6)Kubernetes(5)Istio(3)

语言

全部英语(221)中文(简体)(23)中文(简体)(1)英语(1)

格式

全部PDF文档 PDF(224)其他文档 其他(22)
 
本次搜索耗时 0.381 秒,为您找到相关结果约 246 个.
  • 全部
  • 云计算&大数据
  • VirtualBox
  • Apache Kyuubi
  • Pandas
  • 机器学习
  • OpenShift
  • rancher
  • Apache Flink
  • Kubernetes
  • Istio
  • 全部
  • 英语
  • 中文(简体)
  • 中文(简体)
  • 英语
  • 全部
  • PDF文档 PDF
  • 其他文档 其他
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 A Day in the Life of a Data Scientist Conquer Machine Learning Lifecycle on Kubernetes

    A Day in the Life of a Data Scientist Conquer Machine Learning Lifecycle on Kubernetes Brian Redmond • Cloud Architect @ Microsoft (18 years) • Azure Global Black Belt Team • Live in Pittsburgh, PA Repeatable/consistent • CI/CD • This has worked well for App Dev. Now time for AI/ML • But, must ensure data scientist are not hindered by structure Why Containers, Kubernetes & Helm? • Container • Contains everything
    0 码力 | 21 页 | 68.69 MB | 1 年前
    3
  • pdf文档 第29 期| 2023 年9 月- 技术雷达

    Camilla Falconi Crispim James Lewis Scott Shaw Rachel Laycock (CTO) Martin Fowler (Chief Scientist) Erik Dörnenburg Marisa Hoenig Selvakumar Natesan Shangqi Liu Sofia Tania Vanya Seth Bharani
    0 码力 | 43 页 | 2.76 MB | 1 年前
    3
  • pdf文档 keras tutorial

    max_value represent the upper bound  axis represent the dimension in which the constraint to be applied. e.g. in Shape (2,3,4) axis 0 denotes first dimension, 1 denotes second dimension and 2 denotes kernel_constraint=my_constrain)) where, rate represent the rate at which the weight constrain is applied. Regularizers In machine learning, regularizers are used in the optimization phase. It applies kernel_regularizer represents the regularizer function to be applied to the kernel weights matrix.  bias_regularizer represents the regularizer function to be applied to the bias vector.  activity_regularizer
    0 码力 | 98 页 | 1.57 MB | 1 年前
    3
  • pdf文档 OpenShift Container Platform 4.10 CLI 工具

    value 'my frontend' # If the same annotation is set multiple times, only the last value will be applied oc annotate pods foo description='my frontend' # Update a pod identified by type and name in (OC) 23 2.5.1.5. oc apply edit-last-applied 编辑资源/对象的最新 last-applied-configuration 注解 用法示例 用法示例 2.5.1.6. oc apply set-last-applied 设置 live 对象上的 last-applied-configuration 注释,以匹配文件的内容。 用法示例 用法示例 view-last-applied 查看资源/对象最新的最后应用配置注解 用法示例 用法示例 2.5.1.8. oc attach 附加到正在运行的容器 用法示例 用法示例 # Edit the last-applied-configuration annotations by type/name in YAML oc apply edit-last-applied deployment/nginx
    0 码力 | 120 页 | 1.04 MB | 1 年前
    3
  • pdf文档 OpenShift Container Platform 4.13 CLI 工具

    value 'my frontend' # If the same annotation is set multiple times, only the last value will be applied oc annotate pods foo description='my frontend' # Update a pod identified by type and name in (OC) 27 2.7.1.5. oc apply edit-last-applied 编辑资源/对象的最新 last-applied-configuration 注解 用法示例 用法示例 2.7.1.6. oc apply set-last-applied 设置 live 对象上的 last-applied-configuration 注释,以匹配文件的内容。 用法示例 用法示例 2.7.1.7. oc apply view-last-applied 查看资源/对象最新的最后应用配置注解 # Apply the configuration in pod.json to a pod oc apply -f ./pod.json # Apply resources from a directory containing kustomization.yaml -
    0 码力 | 128 页 | 1.11 MB | 1 年前
    3
  • pdf文档 OpenShift Container Platform 4.8 CLI 工具

    value 'my frontend'. # If the same annotation is set multiple times, only the last value will be applied oc annotate pods foo description='my frontend' # Update a pod identified by type and name in (OC) 23 2.5.1.5. oc apply edit-last-applied 编辑资源/对象的最新 last-applied-configuration 注解 用法示例 用法示例 2.5.1.6. oc apply set-last-applied 设置 live 对象上的 last-applied-configuration 注释,以匹配文件的内容。 用法示例 用法示例 view-last-applied 查看资源/对象最新的最后应用配置注解 用法示例 用法示例 2.5.1.8. oc attach 附加到正在运行的容器 用法示例 用法示例 # Edit the last-applied-configuration annotations by type/name in YAML. oc apply edit-last-applied deployment/nginx
    0 码力 | 152 页 | 1.24 MB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 1.3.3

    statistics (mean, median, min, max, counts...) are easily calculable. These or custom aggregations can be applied on the entire data set, a sliding window of the data, or grouped by categories. The latter is also pandas and Matplotlib explicit enables all the power of matplotlib to the plot. This strategy is applied in the previous example: fig, axs = plt.subplots(figsize=(12, 4)) # Create an empty matplotlib Figure 2019-05-07 06:00:00 NaN 61.9 NaN NaN␣ ˓→ NaN The calculation is again element-wise, so the / is applied for the values in each row. Also other mathematical operators (+, -, \*, /) or logical operators
    0 码力 | 3603 页 | 14.65 MB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 1.3.4

    statistics (mean, median, min, max, counts...) are easily calculable. These or custom aggregations can be applied on the entire data set, a sliding window of the data, or grouped by categories. The latter is also pandas and Matplotlib explicit enables all the power of matplotlib to the plot. This strategy is applied in the previous example: fig, axs = plt.subplots(figsize=(12, 4)) # Create an empty matplotlib Figure 2019-05-07 06:00:00 NaN 61.9 NaN NaN␣ ˓→ NaN The calculation is again element-wise, so the / is applied for the values in each row. Also other mathematical operators (+, -, \*, /) or logical operators
    0 码力 | 3605 页 | 14.68 MB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 1.3.2

    statistics (mean, median, min, max, counts...) are easily calculable. These or custom aggregations can be applied on the entire data set, a sliding window of the data, or grouped by categories. The latter is also pandas and Matplotlib explicit enables all the power of matplotlib to the plot. This strategy is applied in the previous example: fig, axs = plt.subplots(figsize=(12, 4)) # Create an empty matplotlib Figure 2019-05-07 06:00:00 NaN 61.9 NaN ˓→NaN NaN The calculation is again element-wise, so the / is applied for the values in each row. Also other mathematical operators (+, -, \*, /) or logical operators
    0 码力 | 3509 页 | 14.01 MB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 1.4.2

    statistics (mean, median, min, max, counts...) are easily calculable. These or custom aggregations can be applied on the entire data set, a sliding window of the data, or grouped by categories. The latter is also pandas and Matplotlib explicit enables all the power of matplotlib to the plot. This strategy is applied in the previous example: fig, axs = plt.subplots(figsize=(12, 4)) # Create an empty matplotlib Figure 2019-05-07 06:00:00 NaN 61.9 NaN NaN␣ ˓→ NaN The calculation is again element-wise, so the / is applied for the values in each row. Also other mathematical operators (+, -, \*, /) or logical operators
    0 码力 | 3739 页 | 15.24 MB | 1 年前
    3
共 246 条
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 25
前往
页
相关搜索词
KubeConChinaMLLifecycle292023技术雷达kerastutorialOpenShiftContainerPlatform4.10CLI工具4.134.8pandaspowerfulPythondataanalysistoolkit1.31.4
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩