积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(248)VirtualBox(106)Apache Kyuubi(44)Pandas(32)机器学习(12)Kubernetes(10)rancher(6)Apache Karaf(6)Istio(5)边缘计算(5)

语言

全部英语(227)中文(简体)(18)英语(2)中文(繁体)(1)

格式

全部PDF文档 PDF(224)其他文档 其他(24)
 
本次搜索耗时 0.623 秒,为您找到相关结果约 248 个.
  • 全部
  • 云计算&大数据
  • VirtualBox
  • Apache Kyuubi
  • Pandas
  • 机器学习
  • Kubernetes
  • rancher
  • Apache Karaf
  • Istio
  • 边缘计算
  • 全部
  • 英语
  • 中文(简体)
  • 英语
  • 中文(繁体)
  • 全部
  • PDF文档 PDF
  • 其他文档 其他
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Putting an Invisible Shield on Kubernetes Secrets

    Kailun Qin, Ant Group Putting an Invisible Shield on Kubernetes Secrets Agenda • K8s Secrets: Overview • TEE-based K8s Secrets Protection: Solution • Production Experience @ Ant Group • Demo • Summary security [1] KubeCon China 2018: Node Operator: Kubernetes Node Management Made Simple - Joe Chen, Ant Financial TEE-based Secrets Protection: Solution Confidential Computing A Trusted Execution Environment Secrets • Introducing mutual (remote / local) attestations between entities Production Experience @ Ant Group KMS Plugin • Workflow • Encryption • Decryption • Engineering decisions • apiserver is responsible
    0 码力 | 33 页 | 20.81 MB | 1 年前
    3
  • pdf文档 Oracle VM VirtualBox UserManual_fr_FR.pdf

    version 4.0 ou supérieur . . . . . . . . 208 10.1.2 Machines créées par des versions de VirtualBox antérieures à 4.0 . . . . 209 10.1.3 Données globales de configuration . . . . . . . . . . . . . . . Avant cette version, il n’était possible que de revenir au tout dernier instantané pris – pas à ceux antérieurs, et l’opération s’appelait “Désactiver l’état actuel” et non “Restaurer le dernier instantané“ partir du menu contextuel de la liste des VMs du gestionnaire (en sélectionnant “Cloner”) ou de la vue “Dépôts” de la VM sélectionnée. Choisissez d’abord un @ouveau nom pour le clone. Quand vous sélectionnez
    0 码力 | 386 页 | 5.61 MB | 1 年前
    3
  • pdf文档 云原生图数据库解谜、容器化实践与 Serverless 应用实操

    ┌──────────▼──────────┐ Siwi, /ˈsɪwi/ │ │ │ Web_Speech_API │ A PoC of Dialog System │ │ │ Vue.JS │ With Graph Database │ │ │ │ Backed Knowledge Graph │ │ # Browser End │ ├── README.md │ ├── package.json │ └── src │ ├── App.vue # Listen to user and pass Qs to S │ └── main.js └── wsgi.py wey-gu/nebula-siwi The Function
    0 码力 | 47 页 | 29.72 MB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 1.3.2

    nodes and attributes into a pandas DataFrame. Note: Since there is no standard XML structure where design types can vary in many ways, read_xml works best with flatter, shallow versions. If an XML document comments, and others. Only namespaces at the root level is supported. However, stylesheet allows design changes after initial output. Let’s look at a few examples. Write an XML without options: In [350]: case is to limit a time series to start and end at two specific dates. To enable this, we made the design choice to make label-based slicing include both endpoints: In [235]: s.loc["c":"e"] Out[235]: c
    0 码力 | 3509 页 | 14.01 MB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 1.3.3

    nodes and attributes into a pandas DataFrame. Note: Since there is no standard XML structure where design types can vary in many ways, read_xml works best with flatter, shallow versions. If an XML document comments, and others. Only namespaces at the root level is supported. However, stylesheet allows design changes after initial output. 342 Chapter 2. User Guide pandas: powerful Python data analysis toolkit case is to limit a time series to start and end at two specific dates. To enable this, we made the design choice to make label-based slicing include both endpoints: In [235]: s.loc["c":"e"] Out[235]: c
    0 码力 | 3603 页 | 14.65 MB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 1.3.4

    nodes and attributes into a pandas DataFrame. Note: Since there is no standard XML structure where design types can vary in many ways, read_xml works best with flatter, shallow versions. If an XML document comments, and others. Only namespaces at the root level is supported. However, stylesheet allows design changes after initial output. 342 Chapter 2. User Guide pandas: powerful Python data analysis toolkit case is to limit a time series to start and end at two specific dates. To enable this, we made the design choice to make label-based slicing include both endpoints: In [235]: s.loc["c":"e"] Out[235]: c
    0 码力 | 3605 页 | 14.68 MB | 1 年前
    3
  • pdf文档 OpenShift Container Platform 4.8 CLI 工具

    3 DefaultDevfileRegistry nodejs-vue Stack with Vue 3 DefaultDevfileRegistry php-laravel
    0 码力 | 152 页 | 1.24 MB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 1.1.1

    case is to limit a time series to start and end at two specific dates. To enable this, we made the design choice to make label-based slicing include both endpoints: In [237]: s.loc['c':'e'] Out[237]: c source implementations (like base::merge.data.frame in R). The reason for this is careful algorithmic design and the internal layout of the data in DataFrame. See the cookbook for some advanced strategies same type is returned, containing booleans. >>> df = pd.DataFrame([['ant', 'bee', 'cat'], ['dog', None, 'fly']]) >>> df 0 1 2 0 ant bee cat 1 dog None fly >>> pd.isna(df) 0 1 2 0 False False False
    0 码力 | 3231 页 | 10.87 MB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 1.1.0

    case is to limit a time series to start and end at two specific dates. To enable this, we made the design choice to make label-based slicing include both endpoints: In [237]: s.loc['c':'e'] Out[237]: c source implementations (like base::merge.data.frame in R). The reason for this is careful algorithmic design and the internal layout of the data in DataFrame. See the cookbook for some advanced strategies same type is returned, containing booleans. >>> df = pd.DataFrame([['ant', 'bee', 'cat'], ['dog', None, 'fly']]) >>> df 0 1 2 0 ant bee cat 1 dog None fly >>> pd.isna(df) 0 1 2 0 False False False
    0 码力 | 3229 页 | 10.87 MB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 1.4.2

    nodes and attributes into a pandas DataFrame. Note: Since there is no standard XML structure where design types can vary in many ways, read_xml works best with flatter, shallow versions. If an XML document comments, and others. Only namespaces at the root level is supported. However, stylesheet allows design changes after initial output. Let’s look at a few examples. Write an XML without options: In [354]: case is to limit a time series to start and end at two specific dates. To enable this, we made the design choice to make label-based slicing include both endpoints: In [235]: s.loc["c":"e"] Out[235]: c
    0 码力 | 3739 页 | 15.24 MB | 1 年前
    3
共 248 条
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 25
前往
页
相关搜索词
PuttinganInvisibleShieldonKubernetesSecretsKailunQinAntGroupOracleVMVirtualBoxUserManualfrFRpdf原生数据据库数据库解谜容器实践Serverless应用实操pandaspowerfulPythondataanalysistoolkit1.3OpenShiftContainerPlatform4.8CLI工具1.11.4
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩