迁移学习-自定义数据集实战
自定义数据集实战 主讲:龙良曲 Pokemon Go! Pokemon Dataset https://www.pyimagesearch.com/2018/04/16/keras-and-convolutional-neural-networks-cnns/ Download ▪ 链接: https://pan.baidu.com/s/1V_ZJ7ufjUUFZwD2NHSNMFw0 码力 | 16 页 | 719.15 KB | 1 年前3Hadoop 迁移到阿里云MaxCompute 技术方案
Hadoop 迁移到阿里云 MaxCompute 技术方案 (V2.8.5) 编写人:MaxCompute 产品团队 日 期:2019.05 Alibaba Cloud MaxCompute 解决方案 2 目录 1 概要 .................................. ........... 6 2 阿里云大数据与开源生态对比 .................................................................................................................. 7 2.1 Hadoop 及开源生态与阿里云大数据生态对比 ................... .................. 7 2.1.1 主流大数据体系架构 ............................................................................................................. 7 2.1.2 开源大数据组件架构 .............................0 码力 | 59 页 | 4.33 MB | 1 年前3蚂蚁金服Service Mesh渐进式迁移方案
Service Mesh Meetup #4 上海站 蚂蚁金服Service Mesh 渐进式迁移方案 2018.11.25 敖小剑 @ 蚂蚁金服 中间件 龙轼 @UC 基础研发部1 Service Mesh演进路线 1 2 实现平滑迁移的关键 3 DNS寻址方案的演进 4 5 总结 DNS寻址方案的后续规划ü 对未来长期目标的认可 • Service Mesh(带控制平面,如Istio) 还有很多应用没有实现微服务化 • 还有很多应用没有运行在kubernetes之上 • Istio目前还不够稳定,也无法原生支持我们的规模 • 现有系统中的众多应用不可能一夜之间全部迁移 ü 最重要的:平滑迁移 • 微服务 + Service Mesh + Kubernetes 是目标 • 但是如何从现有体系向目标迈进,必须给出可行的实践指导 ü Roadmap • 预计2019年初 )非常自然 • 容易落地 • 快速达成短期目标 ü 缺点是再往后走 • 由于没有k8s的底层支持,就不得不做大量工作 • 尤其istio的非k8s支持,工作量很大 • 而这些投入,在最终迁移到k8s时,又被废弃 ü 结论: • 不符合蚂蚁的远期规划(k8s是我们的既定目标) • 会造成投资浪费(k8s铺开在即) 演进路线2分析 部署在 非k8s上 Service Mesh (Sidecar模式)0 码力 | 40 页 | 11.13 MB | 5 月前3机器学习课程-温州大学-10深度学习-人脸识别与风格迁移
2023年04月 深度学习-人脸识别和风格迁移 黄海广 副教授 2 01 人脸识别概述 02 神经风格迁移 本章目录 3 01 人脸识别概述 1.人脸识别概述 02 神经风格迁移 4 1.人脸识别概述 人脸验证(face verification) 人脸识别(face recognition) • 有一个K个人的人脸数据库 • 获取输入图像 • 如果图像是K个人中的某人(或不认识) 如果图像是K个人中的某人(或不认识) • 输入图片,以及某人的ID或者是名字 • 验证输入图片是否是这个人 人脸聚类(Face Clustering) 在数据库中对人脸进行聚类, 直接K-Means即可。 5 1.人脸识别概述 人脸检测的步骤 • 人脸定位 确定是否存在人脸,人脸存在的位置、范围等 • 人脸对齐 把众多人脸图像转换到一个统一角度和姿势 • 确定关键点 关键点包括:眼角、鼻尖、嘴角等 在一次学习问题中,只能通过一个样本进行学习,以能够认 出同一个人。大多数人脸识别系统都需要解决这个问题。 系统需要做的就是,仅仅通过一张已有的照片,来识别前面 这个人确实是她。相反,如果机器看到一个不在数据库里的 人所示),机器应该能分辨出她不是数据库中四个人之一。 ?(???1, ???2) = ?????? ?? ?????????? ??????? ?????? 只要你能学习这个函数?,通过输入一对图片,它将会告诉0 码力 | 34 页 | 2.49 MB | 1 年前3Flink如何实时分析Iceberg数据湖的CDC数据
Flink如何实时分析Iceberg数据湖的CDC数据 阿里巴巴 李/松/胡争 23选择 Flink Ic+b+1g #2 常DCCDC 分析方案 #1 如3实时写 4F取 ## 未来规划 #4 #见的CDC分析方案 #1 离线 HBase 集u分析 CDC 数a 、CDC记录实时写入HBase。高吞P + 低延迟。 2、小vSg询延迟低。 3、集u可拓展 ci评C 4、数a格式q定HF23e,不cF拓展到 +arquet、Avro、Orcn。 t点 A3a/21 Kudu 维护 CDC 数据p 、支持L时更新数据,时效性佳。 2、CK加速,适合OLAP分析。 方案评估 优点 、cedKudup群,a较小众。维护 O本q。 2、H HDFS / S3 / OSS 等D裂。数据c e,且KAO本不如S3 / OSS。 3、Kudud批量P描不如3ar4u1t。 4、不支持增量SF。 4、不支持增量SF。 h点 直接D入CDC到Hi2+分析 、流程能E作 2、Hi2+存量数据不受增量数据H响。 方案评估 优点 、数据不是CR写入; 2、每次数据D致都要 MERGE 存量数据 。T+ 方GT新3R效性差。 3、不M持CR1ps+rt。 缺点 SCaDk + )=AFa IL()(数据 MER,E .NTO GE=DE US.N, chan>=E ON GE=DE.GE=D0 码力 | 36 页 | 781.69 KB | 1 年前3大数据集成与Hadoop - IBM
年 9 月 大数据集成与 Hadoop 可最大限度降低Hadoop计划风险并提高ROI的最佳实践 2 大数据集成与 Hadoop 简介 Apache Hadoop技术通过支持新的流程和架构,不断改进 大数据措施的经济性和活力,这样不仅有助于削减成本、增加 收益,而且还能树立竞争优势。Hadoop是一个开源软件项目, 支持在多个商业服务器群集间分散处理和存储大型数据集, 并可根据 MapReduce)。 但是,Hadoop基础架构本身并没有提供完整的大数据集成解 决方案,摆在人们面前的既有挑战,也有机遇,只有处理好这些 问题,才能安享各项优势,最大限度提高投资回报率 (ROI)。 大数据集成对于Hadoop措施的重要性 Hadoop的迅速崛起推动企业在如何抽取、管理、转换、存储和 分析大数据方面实现了范式转变。无论是要更深入的分析,还是 希望获得更出色的洞察、新产品、新服务以及更高的服务水平,都 依靠收集、移动、转换、清除、集成、治理、探索以及分析多种 不同来源的大量不同类型的数据来实现大数据与Hadoop项 目。实现所有这些目标需要运用富有弹性的端到端信息集成 解决方案,该解决方案不仅可实现大规模扩展,还能提供支持 Hadoop项目所需的基础架构、功能、流程和行为准则。 “在很大程度上,80%的大数据项目开发 精力用于数据集成,只有20%的精力投入 到数据分析中。” —Intel Corporation,“使用0 码力 | 16 页 | 1.23 MB | 1 年前3通过Oracle 并行处理集成 Hadoop 数据
并行处理集成 Hadoop 数据 1 Oracle 白皮书 — 通过 Oracle 并行处理集成 Hadoop 数据 引言 许多垂直行业都在关注文件系统中庞大的数据。这些数据中通常包含大量无关的 明 明细信息,以及部分可用于趋势分析或丰富其他数据的精华信息。尽管这些数据 存储在数据库之外,但一些客户仍然希望将其与数据库中的数据整合在一起以提 取对业务用户有价值的信息。 本文详细介绍了如何从 Oracle 数据库访问存储在 Hadoop 集群里的数据。请注 意,本文选择了 Hadoop 和 HDFS 作为示例,但这里的策略同样适用于其他分 布式存储机制。本文中介绍了各种访问方法,还通过一个具体示例说明了其中一 通过 Oracle 并行处理集成 Hadoop 数据 外部 Hadoop 数据的访问方法 要从 Oracle 数据库里访问某个文件系统中的外部文件或外部数据,最简单的方法莫过于使用 外部表。请参阅这里了解外部表。 外部表以表的形式展示存储在文件系统中的数据,并且可在 SQL 查询中完全透明地使用。 因此,可以考虑用外部表从0 码力 | 21 页 | 1.03 MB | 1 年前3大数据时代的Intel之Hadoop
大数据时代的Intel乊Hadoop 系统方案架构师:朱海峰 英特尔®中国于计算创新中心 2013.4 北京 法律声明 本文所提供乊信息均不英特尔® 产品相关。本文丌代表英特尔公司戒其它机构向仸何人明确戒隐含地授予仸何知识产权。除相关产品的英特尔销售条款不条件中列明乊担保条件以外,英特 尔公司丌对销售和/戒使用英特尔产品做出其它仸何明确戒隐含的担保,包括对适用亍特定用途、适销 可随时更改,恕丌另行通知。 版权所有 © 2012 英特尔公司。所有权保留。 提纲 • 大数据时代的新挑戓 • 大数据时代的Intel • 关注产业应用,产研相亏促迚 从文明诞生到2003年,人类文明产生了 5EB的数据; 而今天,我们每两天产生5EB的数据。 Eric Schmidt 0 20,000 40,000 60,000 80,000 2007 2008 2009 2010 2011 2012 2013 2014 2015 Exponential Growth 内容仓库– 海量/非结构化 传统非结构化数据 传统结构化数据 企业托管服务中的数据 Linear Growth Source: IDC, 2011 Worldwide Enterprise Storage Systems 2011–2015 Forecast0 码力 | 36 页 | 2.50 MB | 1 年前3TensorFlow on Yarn:深度学习遇上大数据
深度学习 + 大数据 TensorFlow on Yarn 李远策 2017年4月17日 内容大纲 Ø TensorFlow使用现状及痛点� Ø TensorFlow on Yarn设计� Ø TensorFlow on Yarn技术细节揭秘� Ø 深度学习平台演进及SparkFlow介绍� 背景 坐标:360-系统部-⼤数据团队� 专业:Yarn、Spark、MR、HDFS 专业:Yarn、Spark、MR、HDFS …� 挑战:深度学习空前⽕爆,各种深度学习框架层出不穷,业务部门 拥抱新兴技术。平台怎么应对?� 机遇:Maybe 深度学习 + ⼤数据 � � TensorFlow使用现状及痛点 场景(1)� 场景(2)� TensorFlow使用现状及痛点 !.train.ClusterSpec({ “worker”: [ “worker0.example ⼿动拉取训练模型� TensorFlow使用现状及痛点 • 多⼈多服务器使用混乱,计算资源如何划分?� • 没有GPUs集群资源管理和调度(内存、CPU、GPU、 端⼝),集群资源负载不均� • 训练数据⼿动分发,训练模型⼿动保存� • 进程遗留问题,需要⼿动杀死� • 缺乏作业统⼀管理,不便对作业运⾏状态跟踪� • 日志查看不⽅便� � 总结:� TensorFlow使用现状及痛点 •0 码力 | 32 页 | 4.06 MB | 1 年前3尚硅谷大数据技术之Hadoop(入门)
尚硅谷大数据技术之 Hadoop(入门) ————————————————————————————— 更多 Java –大数据 –前端 –python 人工智能资料下载,可百度访问:尚硅谷官网 尚硅谷大数据技术之 Hadoop(入门) (作者:尚硅谷大数据研发部) 版本:V3.3 第 1 章 Hadoop 概述 1.1 Hadoop 是什么 Hadoop是什么 Hadoop是什么 1)Hadoop是一个由Apache基金会所开发的分布式系统基础架构。 2)主要解决,海量数据的存储和海量数据的分析计算问题。 3)广义上来说,Hadoop通常是指一个更广泛的概念——Hadoop生态圈。 1.2 Hadoop 发展历史(了解) Hadoop发展历史 1)Hadoop创始人Doug Cutting,为了实现与Google类似的全文搜索功能,他在Lucene框架基础上进行优 2)2001年年底Lucene成为Apache基金会的一个子项目。 3)对于海量数据的场景,Lucene框架面对与Google同样的困难,存储海量数据困难,检索海量速度慢。 4)学习和模仿Google解决这些问题的办法 :微型版Nutch。 5)可以说Google是Hadoop的思想之源(Google在大数据方面的三篇论文) GFS --->HDFS Map-Reduce --->MR0 码力 | 35 页 | 1.70 MB | 1 年前3
共 316 条
- 1
- 2
- 3
- 4
- 5
- 6
- 32