MLP网络层全军出击:全连接层 主讲人:龙良曲 I know nothing Be practical nn.Linear relu? concisely ▪ inherit from nn.Module ▪ init layer in __init__ ▪ implement forward() Step1. Step2. Step3. nn.ReLU v.s. F.relu()0 码力 | 13 页 | 992.88 KB | 1 年前3
 机器学习课程-温州大学-13深度学习-Transformervector作为编码器到解码器的输入。 7 1.Transformer介绍 Attention注意力机制 在介绍什么是注意力机制之前, 先让大家看一张图片。当大家看 到下面图片,会首先看到什么内 容?当过载信息映入眼帘时,我 们的大脑会把注意力放在主要的 信息上,这就是大脑的注意力机 制。 8 1.Transformer介绍 每个词的Attention计算 每个词的Q会 量上更优、更易于并行化,所需训练时间明显更少 ◼ Transformer通过成功地将其应用于具有大量和有限训 练数据的分析,可以很好地推广到其他任务 ◼ Transformer,它完全基于注意力机制, 完全不用重复 和卷积,因而这些模型在质量上更优,同时更易于并 行化,并且需要的训练时间明显更少。 ◼ Transformer出现以后,迅速取代了RNN系列变种,跻 身主流模型架构基础。(RNN缺陷正在于流水线式的 图:Transformer模型架构 1.Transformer介绍 12 Transformer Transformer —— 大力出奇迹的起点 • 在Transformer提出之后,大模型的基础模 型架构基本形成,注意力机制代替卷积神 经网络称为主流基础模型组件 – 有利于模型向更大的参数量扩展 – Transformer有兼容多模态信息的天生优势特 性,这有力地丰富了大模型的应用场景。 参数少 速度快0 码力 | 60 页 | 3.51 MB | 1 年前3
 动手学深度学习 v2.0网络架构 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 3.4.3 全连接层的参数开销 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 3.4.4 softmax运算 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 4.1.1 隐藏层 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 4.1.2 激活函数 提交Kaggle预测 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188 5 深度学习计算 191 5.1 层和块 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1910 码力 | 797 页 | 29.45 MB | 1 年前3
 机器学习课程-温州大学-14深度学习-Vision Transformer (ViT) 将位置编码信息加入提取的特征 2.模型介绍 14 位置编码信息对准确率的影响 2.模型介绍 结论:编码有用,但是怎么编码影响不大,干脆用简单的得了 2D(分别计算行和列的编码,然后求和)的效果还不如1D的每一层都加共享的 位置编码也没啥太大用 15 位置编码 2.模型介绍 16 将 3) 的 结 果 喂 入 标 准 Transformer 的 encoder 中 作 者将类别作为一个可学习的 attention 的输入。 可以叠加多层encoder: 2.模型介绍 17 将encoder得到的结果 输入分类层 encoder 会输出多个上 下文向量,对于图像分 类,只需要 ?0。 2.模型介绍 18 1.背景知识 将encoder得到的结果 输入分类层 encoder 会输出多个上 下文向量,对于图像分 类,只需要 ?0。 19 模型框架 最简洁的Vision Transformer模型 2.模型介绍 20 来自输入空间的注意力表达 输入 输入 输入 注意力 注意力 注意力 2.模型介绍 21 左图展示了模型学习到的图嵌入,中图展示了学习到的位置嵌入,右图展示了不同层注意 力的平均距离。 2.模型介绍 22 加入位置信息的原因 如下图所示,将左图的patch打乱,则两个图是不同的,但 对于Transformer的最后一层来说会得到相同的特征(认为是 一个图),0 码力 | 34 页 | 2.78 MB | 1 年前3
 全栈服务网格 - Aeraki 助你在
Istio 服务网格中管理任何七层流量服务网格中管理任何七层流量 赵化冰@腾讯云 #IstioCon Huabing Zhao Software Engineer @ Tencent Cloud https://zhaohuabing.com @zhaohuabing @zhaohuabing @zhaohuabing @zhaohuabing #IstioCon Agenda ❏ Service Mesh 中的七层流量管理能力 中的七层流量管理能力 ❏ 几种扩展 Istio 流量管理能力的方法 ❏ Aeraki - 在 Isito 服务网格中管理所有七层流量 ❏ Demo - Dubbo Traffic Management ❏ MetaProtocol - Service Mesh 通用七层协议框架 #IstioCon Protocols in a Typical Microservice Application Service Security, Observability) #IstioCon What Do We Expect From a Service Mesh? 为了将基础设施的运维管理从应用代码中剥离,我们需要七层的流量管 理能力: ● Routing based on layer-7 header ○ Load balancing at requet level ○ HTTP host/header/url/method0 码力 | 29 页 | 2.11 MB | 1 年前3
 Qcon北京2018-《文本智能处理的深度学习技术》-陈运文2,新信息选择 3,单元状态更新 4,确定输出 使用深度学习解决NLP问题 03 深度学习用于各类型文本应用的实践方法 文本挖掘各种类型应用的处理框架 文本数据 结果 预处理 输出层 表示层 隐层 不同深度学习模型 后处理 NER 分词 情感分析 文本分类 机器翻译 … 文本分类 传统机器学习 • 选择分类器(朴素贝叶斯,SVM,KNN,LR,决 策树) • 特征工程构造特征 文本分类 CNN RNN CLSTM 序列标注 传统机器学习(CRF) • 需要大量特征工程 • 不同领域需要反复调整 深度学习(Bi-LSTM+CRF) • 多领域通用 • 输入层采用词向量,提升泛化能力 • 循环神经网络(LSTM,GRU等)能学 到一些较远的的上下文特征以及一些 非线性特征 序列标注 字/词向量 Bi-LSTM 会 数 据 开 观 达 去 明 小 输入的原文经过编码器编码变成向量 l 解码器从向量里面提取关键信息,组合成生成式摘要 深度学习内部注意力机制的引入 l 内部注意力机制在解码器里面做 l 关注已生成词,解决长序列摘要生成时,个别字词重复出现的问题 Bi_LSTM Bi_LSTM Bi_LSTM RNN RNN 解码器内部注意力机制 输入序列 输入序列 输入序列。。。 编码器 解码器 摘要序列。。。 摘要序列 Rouge指标优化0 码力 | 46 页 | 25.61 MB | 1 年前3
 机器学习课程-温州大学-12深度学习-自然语言处理和词嵌入中,考虑到主导序列转导模型基于编码器-解码器配置中的复杂递归或卷积 神经网络,性能最好的模型被证明还是通过注意力机制(attention mechanism)连接编码器和解码器,因而《Attention Is All You Need》 中提出了一种新的简单架构——Transformer,它完全基于注意力机制, 完全不用重复和卷积,因而这些模型在质量上更优,同时更易于并行化,并 且需要的训练时间明显更少。 通过随机Mask(即遮挡)数据库文本中的 词语或语段,让神经网络自主学习复原被 遮挡部分,从而拥有“猜测”缺失内容的 能力,产出预训练模型。再通过大规模预 训练模型理解上文或给定条件,从概率层 面推测最符合要求的输出结果。其本质是 借助超大规模的训练参数猜测上下文的过 程 文本风格 主流思路是分离文本属性及文本内容 迁移 隐式方法即使用某类无监督学习学习或强化学 习模式将文本属性及内容自动分离,常见的有 生成对抗方式,即通过GAN实现目标属性和 文本量性完全由不同的编码控制的状态。 对话式文本生成适用于智能客服等任务型和闲聊型机器人等 非任务型人机交互场景,可分类为管道模式及端对端模式。 结构性的文本生成,首先通过注意力机制、多层感知器等系 统进行语句内容预选,对数值、时间等类型数据进行推理。 增强数据间的结构信息。其次通过Transformer等模式结合 上下文进行推导,生成最终文本。 ◼ Transfo0 码力 | 44 页 | 2.36 MB | 1 年前3
 【PyTorch深度学习-龙龙老师】-测试版2021126.1 感知机 6.2 全连接层 6.3 神经网络 6.4 激活函数 6.5 输出层设计 6.6 误差计算 6.7 神经网络类型 6.8 油耗预测实战 6.9 参考文献 第 7 章 反向传播算法 7.1 导数与梯度 7.2 导数常见性质 7.3 激活函数导数 7.4 损失函数梯度 7.5 全连接层梯度 预览版202112 全连接网络的问题 10.2 卷积神经网络 10.3 卷积层实现 10.4 LeNet-5 实战 10.5 表示学习 10.6 梯度传播 10.7 池化层 10.8 BatchNorm 层 预览版202112 10.9 经典卷积网络 10.10 CIFAR10 与 VGG13 实战 10.11 卷积层变种 10.12 深度残差网络 10.13 DenseNet 循环神经网络 11.1 序列表示方法 11.2 循环神经网络 11.3 梯度传播 11.4 RNN 层使用方法 11.5 RNN 情感分类问题实战 11.6 梯度弥散和梯度爆炸 11.7 RNN 短时记忆 11.8 LSTM 原理 11.9 LSTM 层使用方法 11.10 GRU 简介 11.11 LSTM/GRU 情感分类问题再战 11.12 预训练的词向量0 码力 | 439 页 | 29.91 MB | 1 年前3
 Keras: 基于 Python 的深度学习库. . 17 3.2.3 所有的模型都可调用,就像网络层一样 . . . . . . . . . . . . . . . . . . . . 17 3.2.4 多输入多输出模型 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.2.5 共享网络层 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.2.6 层「节点」的概念 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 目录 II 3.2.7 更多的例子 . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.2.7.1 Inception 模型 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.2.7.2 卷积层上的残差连接 . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.2.7.3 共享视觉模型 . . . . . . . . . . .0 码力 | 257 页 | 1.19 MB | 1 年前3
 华为云深度学习在文本分类中的实践-李明磊2003  神经网络NLP里程碑: Word2vec 2013 CNN RNN 2014左右 Attention 2014 Elmo, Bert 2018 解决维度灾难 预训练+微调 注意力机制 端到端训练 符号-向量 8 预训练+微调 大规模语料训练通 用语言模型 在目标语料上微调 语言模型 在目标语料上训练 分类器 … … BERT E[ C E1 T10 码力 | 23 页 | 1.80 MB | 1 年前3
共 167 条
- 1
 - 2
 - 3
 - 4
 - 5
 - 6
 - 17
 













