探讨和实践基于Istio的微服务治理事件监控Service Mesh Meetup #4 上海站 探讨和实践基于Istio的微服务治理事件监控 2018.11.25 徐运元关于我 2008年毕业于浙江大学,曾在思科和浙大网新有超过 9年的工作经验和5年的云计算领域工作经验,带领团 队完成公司第一代基于Kubernetes的云平台开发和第 二代基于Kubernetes的DevOps云平台开发。目前致力 于公司基于Istio的微服务平台打造。 Metrics Logging Tracing 指标监控 • 指标可被聚合 • 体现系统性能趋势 分布式追踪 • 和请求相关 • HTTP • SQL 日志系统 • 代码逻辑处理事件 • 异常、debug信息容器化和微服务下的监控需求 微观下的监控需求 快速错误追踪 可快速排查在性能测试场景下的 慢方法、异常调用以及异常报文 等信息 单次链路追踪 可细粒度排查应用单次链路调用0 码力 | 29 页 | 8.37 MB | 6 月前3
通过Oracle 并行处理集成 Hadoop 数据白皮书 2011 年 1 月 通过 Oracle 并行处理集成 Hadoop 数据 1 Oracle 白皮书 — 通过 Oracle 并行处理集成 Hadoop 数据 引言 许 作为示例,但这里的策略同样适用于其他分 布式存储机制。本文中介绍了各种访问方法,还通过一个具体示例说明了其中一 种访问方法的实现。 2 Oracle 白皮书 — 通过 Oracle 并行处理集成 Hadoop 数据 外部 Hadoop 数据的访问方法 要从 Oracle 数据库里访问某个文件系统中的外 问 HDFS 文件。FUSE(File System in Userspace)项目针对这种情况提供了解决方法。有多种 FUSE 驱动程序支持用户挂 载 HDFS 存储,并将其作为常规文件系统处理。通过使用一个此类驱动程序,并在数据库实 例上挂载 HDFS(如果是 RAC 数据库,则在其所有实例上挂载 HDFS),即可使用外部表基 础架构轻松访问 HDFS 文件。 图0 码力 | 21 页 | 1.03 MB | 1 年前3
【05 计算平台 蓉荣】Flink 批处理及其应⽤Flink 批处理理及其应⽤用 What is Apache Flink * Apache Flink 是⼀一个分布式⼤大数据处理理引擎 * 可对有限数据流和⽆无限数据流进⾏行行有状态计算 * 可部署在各种集群环境 * 对各种⼤大⼩小的数据规模进⾏行行快速计算 为什什么Flink能做批处理理 Table Stream Bounded Data Unbounded Data ⽣生态 实时计算 StreamC ompute 1 3 4 2 Flink 实时计算 商业化版本 阿⾥里里云实时计算产品⽅方向 存储计算分离 架构 ⾼高性能 全托管架构 全功能⼤大数据 处理理能⼒力力 Thanks0 码力 | 12 页 | 1.44 MB | 1 年前3
深度学习下的图像视频处理技术-沈小勇深度学习下的图像视频处理技术 沈小勇 优图X-Lab视觉AI负责人 专家研究员 自我介绍 自我介绍 2006.9 – 2012.7 浙江大学数学系本科硕士 2012.8 – 2016.6 香港中文大学博士 2016.6 – 2017.5 香港中文大学 Research Fellow 2017.5 – 现在 腾讯优图X-Lab 视觉AI负责人,专家研究员 个人主页:http://xiaoyongshen0 码力 | 121 页 | 37.75 MB | 1 年前3
MATLAB与Spark/Hadoop相集成:实现大数据的处理和价值挖1 © 2015 The MathWorks, Inc. MATLAB与Spark/Hadoop相集成:实现大 数据的处理和价值挖 马文辉 2 内容 ▪ 大数据及其带来的挑战 ▪ MATLAB大数据处理 ➢ tall数组 ➢ 并行与分布式计算 ▪ MATLAB与Spark/Hadoop集成 ➢ MATLAB访问HDFS(Hadoop分布式文件系统) ➢ 在Spark/Hadoop集群上运行MATLAB代码 价值密度的高低与数据总量的大小成反比 ▪ Velocity - 数据处理速度,数据处理速度需要快速 数据处理速度是决定大数据应用的关键 4 大数据带来的挑战 ▪ 传统的工具和方法不能有效工作 – 访问和处理数据变得困难; – 需要学习使用新的工具和新的编程方式; – 不得不重写算法以应对数据规模的增大; ▪ 现有处理或计算方法下的结果质量受到影响 – 被迫只能处理一部分数据(数据子集); – 采用新的工具或重写算法会对现有生产力产生影响; 采用新的工具或重写算法会对现有生产力产生影响; ▪ 数据处理与分析所需时间增长 – 数据规模增大、数据复杂度增加,增加处理难度和所需时间; 5 MATLAB的大数据处理 ▪ 编程 ▪ Streaming ▪ Block Processing ▪ Parallel-for loops ▪ GPU Arrays ▪ SPMD and Distributed Arrays ▪ MapReduce0 码力 | 17 页 | 1.64 MB | 1 年前3
Qcon北京2018-《文本智能处理的深度学习技术》-陈运文达观数据 陈运文 文本智能处理的深度学习技术 达观数据CEO 陈运文 博士 • 中 国 计 算 机 学 会 高 级 会 员 , A C M 和 I E E E 学 会 会 员 , 复 旦 大 学 计 算 机 博 士 和 杰 出 毕 业 生 • 原 腾 讯 文 学 高 级 总 监 、 盛 大 文 学 首 席 数 据 官 、 百 度 核 心 技 术 工 程 师 • 三 十 项 国 家 技 术 法 》 专 注 于 企 业 文 本 挖 掘 技 术 和 相 关 应 用 系 统 的 服 务 个人简介——达观数据CEO 陈运文 达观数据:全球领先的文本智能处理专家 l 为企业提供文本挖掘、知识图谱、搜索引擎和个性化推荐等文本智能处理技术服 务,是国内首家将自动语义分析技术应用于企业数据化运营的人工智能公司 专注于文本挖掘的国际领军人工智能企业 l 获得全球三十大最佳AI企业等荣誉,拥有国家级高新技术企业、CMMI3资质认 覆盖金融、制造、法律、电商、传媒等行业,提升企业文档自动化处理能力 为数百家中国知名客户提供完善的文本智能处理服务 01 文本智能处理背景简介 7 文本 语音 图像 人工智能 Voice Image Text 达观专注于人工智能中的文本处理细分领域 文本处理任务 什么是NLP 概念:Natural Language Processing 自然语言处理 目的:让机器理解人类的语言,是人工智能领域的重要0 码力 | 46 页 | 25.61 MB | 1 年前3
机器学习课程-温州大学-12深度学习-自然语言处理和词嵌入1 2023年05月 深度学习-自然语言处理和词嵌入 黄海广 副教授 2 03 Word2Vec 04 GloVe 本章目录 01 词汇表征和文本数据处理 02 词嵌入 05 GPT 3 1.词汇表征 01 词汇表征和文本数据处理 03 Word2Vec 04 GloVe 02 词嵌入 05 GPT GPT 4 1.词汇表征和文本数据处理 5 1.词汇表征和文本数据处理 6 1.词汇表征和文本数据处理 7 1.词汇表征和文本数据处理 8 2.词嵌入 03 Word2Vec 04 GloVe 02 词嵌入 05 GPT 01 词汇表征和文本数据处理 9 2.词嵌入 “Sally Johnson is an orange farmer 2.词嵌入 嵌入矩阵 14 3.Word2Vec 03 Word2Vec 04 GloVe 02 词嵌入 05 GPT 01 词汇表征和文本数据处理 15 3.Word2Vec 语言模型的训练机制就是这样 1.我们获得了大量文本数据(例如,所 有维基百科文章)。然后 2.我们有一个窗口(比如说三个单词) ,我们会对所有文本进行滑动。0 码力 | 44 页 | 2.36 MB | 1 年前3
第29 期| 2023 年9 月- 技术雷达如何继续以有效协作为重点,不断突破界限,在一个更加分散和动态的环境中进行工作。一些团队利用新的协 作工具不断提出创新解决方案。其他团队则继续调整和改进现有的面对面实践,例如实时结对编程或集体编程、 分布式工作坊(例如 远程事件风暴)以及异步和同步沟通。远程工作提供了许多好处(包括更多样化的人才储 备),但面对面交流的价值是显而易见的。团队不应中断重要的反馈循环,并且需要意识到在转向远程工作时所 做的取舍。 © Thoughtworks 数据的数据产品思维 7. OIDC for GitHub Actions 8. 使用 Terraform 创建监控和告警 9. ReAct 提示工程 10. 检索增强生成 11. 基于风险的故障建模 12. 大语言模型半结构化自然语言输入 13. 追踪健康债务状况 14. 对告警规则的单元测试 15. CI/CD 的零信任保护 评估 16. 通过依赖健康检查化解包幻觉风险 17. 设计系统决策记录 数据的数据产品思维 7. OIDC for GitHub Actions 8. 使用 Terraform 创建监控和告警 9. ReAct 提示工程 10. 检索增强生成 11. 基于风险的故障建模 12. 大语言模型半结构化自然语言输入 13. 追踪健康债务状况 14. 对告警规则的单元测试 15. CI/CD 的零信任保护 评估 16. 通过依赖健康检查化解包幻觉风险 17. 设计系统决策记录0 码力 | 43 页 | 2.76 MB | 1 年前3
基于Kubernetes构建容器云平台的实践
- UCloud优刻得实验室负责⼈ 叶理灯K8S提供了了多种身份认证策略略,具体如何实施? • K8S的有两种⽤用户:服务账号(SA)和普通⽤用户(User),但K8S不不会管理理User,如何管理理User? • K8S有⼀一套完整的权限系统,但如何处理理User与权限的绑定? • 对于多集群,如何实现User跨集群的管理理? 基于RBAC实现账号管理理隔离 Think in Cloud . 北北京 基于RBAC实现账号管理理隔离 • 选择Token认证⽅方式 ⾸首先在k8s中注册CRD • Operator 于 API server 交互,Watch 全部的 Namespace 或者特 定Namespace中对CR的创建、更更新、删除事件 • Operator 处理理这些事件,可以使⽤用 k8s 中的pod、deployment、 statefulset 对象构建应⽤用 Operator⼯工作原理理 Operator Kubernetes API 还可以对集群进⾏行行配置更更新、删除等操作。 Operator Server Think in Cloud . 北北京 Operator管理理⽆无状态的服务 特性 A. ⽆无状态⽔水平弹缩: ⽀支持动态扩缩容 B. 容错处理理: 通过kubernetes validating admission configuration校验⽤用 户下发的编排的crd实例例,同时⾃自动恢复⽤用户误操作的该crd维护的资源 C.0 码力 | 30 页 | 3.52 MB | 1 年前3
API7 ⽹关技术⽩⽪书API⽹关作为微服务架构中重要组件,是流量的核⼼出⼊⼝,⽤于统⼀处理和业务相关的请求,可有 效解决海量请求、恶意访问等问题,以保障业务安全性与稳定性。 图1-1API7架构图 上图为API7产品中控制平⾯(简称CP)与数据平⾯(简称DP)的架构⽰意图,并包含了3个部分: API⽹关 1. ⽤于承载并处理业务流量,管理员在配置路由规则后,⽹关将根据预设规则将请求转发⾄上游服务。 数据平⾯⽤于接收并处理调⽤⽅请求,使⽤Lua与Nginx动态控制请求流量。当请求进⼊时,将根据 预设路由规则进⾏匹配,匹配到的请求将被⽹关转发⾄对应上游服务。在此过程中,⽹关有能⼒根据 预设规则中不同插件的配置,使⽤⼀系列插件对请求从进⼊到离开的各个阶段进⾏操作。例如:请求 可能会经过⾝份认证(避免重放攻击、参数篡改等)、请求审计(请求来源信息、上游处理时⻓ 等)、路由处理(根据预设规则 等)、路由处理(根据预设规则获取最终上游服务地址)、请求转发(⽹关将请求转发⾄上游⽬标节 点)、请求响应(上游处理完成后,⽹关将结果返回给调⽤⽅)等⼏个步骤。 控制平⾯ 2. 控制平⾯包含了ManagerAPI与默认配置中⼼ETCD。管理员在访问并操作控制台时,控制台将调⽤ ManagerAPI下发配置到ETCD,借助ETCDWatch机制,配置将在⽹关中实时⽣效。例如:管理员可 增加⼀条路由,并0 码力 | 19 页 | 1.12 MB | 1 年前3
共 241 条
- 1
- 2
- 3
- 4
- 5
- 6
- 25













