Agda User Manual v2.5.2NATLESS _<_ #-} div-helper : Nat → Nat → Nat → Nat → Nat div-helper k m zero j = k div-helper k m (suc n) zero = div-helper (suc k) m n m div-helper k m (suc n) (suc j) = div-helper k m n j j {-# BUILTIN NATDIVSUCAUX div-helper #-} mod-helper : Nat → Nat → Nat → Nat → Nat mod-helper k m zero j = k mod-helper k m (suc n) zero = mod-helper 0 m n m mod-helper k m (suc n) (suc j) functions for defining natural number division and modulo operations, and satisfy the properties div n (suc m) ≡ div-helper 0 m n m mod n (suc m) ≡ mod-helper 0 m n m Integers module Agda.Builtin.Int Built-in0 码力 | 151 页 | 152.49 KB | 1 年前3
Agda User Manual v2.5.2BUILTIN NATLESS _<_ #-} div-helper : Nat → Nat → Nat → Nat → Nat div-helper k m zero j = k div-helper k m (suc n) zero = div-helper (suc k) m n m div-helper k m (suc n) (suc j) = div-helper k m n j {-# BUILTIN BUILTIN NATDIVSUCAUX div-helper #-} mod-helper : Nat → Nat → Nat → Nat → Nat mod-helper k m zero j = k mod-helper k m (suc n) zero = mod-helper 0 m n m mod-helper k m (suc n) (suc j) = mod-helper (suc functions for defining natural number division and modulo operations, and satisfy the properties div n (suc m) div-helper 0 m n m mod n (suc m) mod-helper 0 m n m 10 Chapter 3. Language Reference Agda Documentation0 码力 | 107 页 | 510.49 KB | 1 年前3
Agda User Manual v2.5.3BUILTIN NATLESS _<_ #-} div-helper : Nat → Nat → Nat → Nat → Nat div-helper k m zero j = k div-helper k m (suc n) zero = div-helper (suc k) m n m div-helper k m (suc n) (suc j) = div-helper k m n j {-# BUILTIN BUILTIN NATDIVSUCAUX div-helper #-} mod-helper : Nat → Nat → Nat → Nat → Nat mod-helper k m zero j = k mod-helper k m (suc n) zero = mod-helper 0 m n m mod-helper k m (suc n) (suc j) = mod-helper (suc functions for defining natural number division and modulo operations, and satisfy the properties div n (suc m) div-helper 0 m n m mod n (suc m) mod-helper 0 m n m 10 Chapter 3. Language Reference Agda Documentation0 码力 | 135 页 | 600.40 KB | 1 年前3
Agda User Manual v2.5.3NATLESS _<_ #-} div-helper : Nat → Nat → Nat → Nat → Nat div-helper k m zero j = k div-helper k m (suc n) zero = div-helper (suc k) m n m div-helper k m (suc n) (suc j) = div-helper k m n j j {-# BUILTIN NATDIVSUCAUX div-helper #-} mod-helper : Nat → Nat → Nat → Nat → Nat mod-helper k m zero j = k mod-helper k m (suc n) zero = mod-helper 0 m n m mod-helper k m (suc n) (suc j) functions for defining natural number division and modulo operations, and satisfy the properties div n (suc m) ≡ div-helper 0 m n m mod n (suc m) ≡ mod-helper 0 m n m Integers module Agda.Builtin.Int Built-in0 码力 | 185 页 | 185.00 KB | 1 年前3
Agda User Manual v2.5.4.2NATLESS _<_ #-} div-helper : Nat → Nat → Nat → Nat → Nat div-helper k m zero j = k div-helper k m (suc n) zero = div-helper (suc k) m n m div-helper k m (suc n) (suc j) = div-helper k m n j j {-# BUILTIN NATDIVSUCAUX div-helper #-} mod-helper : Nat → Nat → Nat → Nat → Nat mod-helper k m zero j = k mod-helper k m (suc n) zero = mod-helper 0 m n m mod-helper k m (suc n) (suc j) functions for defining natural number division and modulo operations, and satisfy the properties div n (suc m) ≡ div-helper 0 m n m mod n (suc m) ≡ mod-helper 0 m n m Machine words module Agda.Builtin.Word0 码力 | 216 页 | 207.61 KB | 1 年前3
Agda User Manual v2.5.4BUILTIN NATLESS _<_ #-} div-helper : Nat → Nat → Nat → Nat → Nat div-helper k m zero j = k div-helper k m (suc n) zero = div-helper (suc k) m n m div-helper k m (suc n) (suc j) = div-helper k m n j {-# BUILTIN BUILTIN NATDIVSUCAUX div-helper #-} mod-helper : Nat → Nat → Nat → Nat → Nat mod-helper k m zero j = k mod-helper k m (suc n) zero = mod-helper 0 m n m mod-helper k m (suc n) (suc j) = mod-helper (suc functions for defining natural number division and modulo operations, and satisfy the properties div n (suc m) div-helper 0 m n m mod n (suc m) mod-helper 0 m n m 14 Chapter 3. Language Reference Agda User0 码力 | 155 页 | 668.67 KB | 1 年前3
Agda User Manual v2.5.4.1BUILTIN NATLESS _<_ #-} div-helper : Nat → Nat → Nat → Nat → Nat div-helper k m zero j = k div-helper k m (suc n) zero = div-helper (suc k) m n m div-helper k m (suc n) (suc j) = div-helper k m n j {-# BUILTIN BUILTIN NATDIVSUCAUX div-helper #-} mod-helper : Nat → Nat → Nat → Nat → Nat mod-helper k m zero j = k mod-helper k m (suc n) zero = mod-helper 0 m n m mod-helper k m (suc n) (suc j) = mod-helper (suc functions for defining natural number division and modulo operations, and satisfy the properties div n (suc m) div-helper 0 m n m mod n (suc m) mod-helper 0 m n m 14 Chapter 3. Language Reference Agda User0 码力 | 155 页 | 668.90 KB | 1 年前3
Agda User Manual v2.5.4.1NATLESS _<_ #-} div-helper : Nat → Nat → Nat → Nat → Nat div-helper k m zero j = k div-helper k m (suc n) zero = div-helper (suc k) m n m div-helper k m (suc n) (suc j) = div-helper k m n j j {-# BUILTIN NATDIVSUCAUX div-helper #-} mod-helper : Nat → Nat → Nat → Nat → Nat mod-helper k m zero j = k mod-helper k m (suc n) zero = mod-helper 0 m n m mod-helper k m (suc n) (suc j) functions for defining natural number division and modulo operations, and satisfy the properties div n (suc m) ≡ div-helper 0 m n m mod n (suc m) ≡ mod-helper 0 m n m Machine words module Agda.Builtin.Word0 码力 | 216 页 | 207.64 KB | 1 年前3
Agda User Manual v2.5.4.2BUILTIN NATLESS _<_ #-} div-helper : Nat → Nat → Nat → Nat → Nat div-helper k m zero j = k div-helper k m (suc n) zero = div-helper (suc k) m n m div-helper k m (suc n) (suc j) = div-helper k m n j {-# BUILTIN BUILTIN NATDIVSUCAUX div-helper #-} mod-helper : Nat → Nat → Nat → Nat → Nat mod-helper k m zero j = k mod-helper k m (suc n) zero = mod-helper 0 m n m mod-helper k m (suc n) (suc j) = mod-helper (suc functions for defining natural number division and modulo operations, and satisfy the properties div n (suc m) div-helper 0 m n m mod n (suc m) mod-helper 0 m n m 14 Chapter 3. Language Reference Agda User0 码力 | 155 页 | 668.75 KB | 1 年前3
Agda User Manual v2.5.4NATLESS _<_ #-} div-helper : Nat → Nat → Nat → Nat → Nat div-helper k m zero j = k div-helper k m (suc n) zero = div-helper (suc k) m n m div-helper k m (suc n) (suc j) = div-helper k m n j j {-# BUILTIN NATDIVSUCAUX div-helper #-} mod-helper : Nat → Nat → Nat → Nat → Nat mod-helper k m zero j = k mod-helper k m (suc n) zero = mod-helper 0 m n m mod-helper k m (suc n) (suc j) functions for defining natural number division and modulo operations, and satisfy the properties div n (suc m) ≡ div-helper 0 m n m mod n (suc m) ≡ mod-helper 0 m n m Machine words module Agda.Builtin.Word0 码力 | 216 页 | 207.63 KB | 1 年前3
共 50 条
- 1
- 2
- 3
- 4
- 5













