Hello 算法 1.1.0 Dart版数据模型,其用于 包括 Linux 和 macOS 在内的 Unix 64 位操作系统。 ‧ 字符 char 的大小在 C 和 C++ 中为 1 字节,在大多数编程语言中取决于特定的字符编码方法,详见“字 符编码”章节。 ‧ 即使表示布尔量仅需 1 位(0 或 1),它在内存中通常也存储为 1 字节。这是因为现代计算机 CPU 通常 将 1 字节作为最小寻址内存单元。 那么,基本数据类型与数据结构之间 位二进制数(一个字节的低 7 位)表示一个字符,最多能够表示 128 个不同的 字符。如图 3‑6 所示,ASCII 码包括英文字母的大小写、数字 0 ~ 9、一些标点符号,以及一些控制字符(如 换行符和制表符)。 图 3‑6 ASCII 码 然而,ASCII 码仅能够表示英文。随着计算机的全球化,诞生了一种能够表示更多语言的 EASCII 字符集。它 在 ASCII 的 7 位基础上扩展到 8 位,能够表示 码点同时出现在一个文本中时,系统如 何解析字符?例如给定一个长度为 2 字节的编码,系统如何确认它是一个 2 字节的字符还是两个 1 字节的字 符? 对于以上问题,一种直接的解决方案是将所有字符存储为等长的编码。如图 3‑7 所示,“Hello”中的每个字 符占用 1 字节,“算法”中的每个字符占用 2 字节。我们可以通过高位填 0 将“Hello 算法”中的所有字符都 编码为 2 字节长度。这样系统就可以每隔0 码力 | 378 页 | 18.45 MB | 1 年前3
Hello 算法 1.2.0 简体中文 Dart 版数据模型,其用于 包括 Linux 和 macOS 在内的 Unix 64 位操作系统。 ‧ 字符 char 的大小在 C 和 C++ 中为 1 字节,在大多数编程语言中取决于特定的字符编码方法,详见“字 符编码”章节。 ‧ 即使表示布尔量仅需 1 位(0 或 1),它在内存中通常也存储为 1 字节。这是因为现代计算机 CPU 通常 将 1 字节作为最小寻址内存单元。 那么,基本数据类型与数据结构之间 位二进制数(一个字节的低 7 位)表示一个字符,最多能够表示 128 个不同的 字符。如图 3‑6 所示,ASCII 码包括英文字母的大小写、数字 0 ~ 9、一些标点符号,以及一些控制字符(如 换行符和制表符)。 图 3‑6 ASCII 码 然而,ASCII 码仅能够表示英文。随着计算机的全球化,诞生了一种能够表示更多语言的 EASCII 字符集。它 在 ASCII 的 7 位基础上扩展到 8 位,能够表示 码点同时出现在一个文本中时,系统如 何解析字符?例如给定一个长度为 2 字节的编码,系统如何确认它是一个 2 字节的字符还是两个 1 字节的字 符? 对于以上问题,一种直接的解决方案是将所有字符存储为等长的编码。如图 3‑7 所示,“Hello”中的每个字 符占用 1 字节,“算法”中的每个字符占用 2 字节。我们可以通过高位填 0 将“Hello 算法”中的所有字符都 编码为 2 字节长度。这样系统就可以每隔0 码力 | 378 页 | 18.46 MB | 10 月前3
Hello 算法 1.0.0 Dart版数据模型,其用于 包括 Linux 和 macOS 在内的 Unix 64 位操作系统。 ‧ 字符 char 的大小在 C 和 C++ 中为 1 字节,在大多数编程语言中取决于特定的字符编码方法,详见“字 符编码”章节。 ‧ 即使表示布尔量仅需 1 位(0 或 1),它在内存中通常也存储为 1 字节。这是因为现代计算机 CPU 通常 将 1 字节作为最小寻址内存单元。 那么,基本数据类型与数据结构之间 位二进制数(一个字节的低 7 位)表示一个字符,最多能够表示 128 个不 同的字符。如图 3‑6 所示,ASCII 码包括英文字母的大小写、数字 0 ~ 9、一些标点符号,以及一些控制字符 (如换行符和制表符)。 图 3‑6 ASCII 码 然而,ASCII 码仅能够表示英文。随着计算机的全球化,诞生了一种能够表示更多语言的「EASCII」字符 集。它在 ASCII 的 7 位基础上扩展到 8 位,能够表示 码点同时出现在一个文本中时,系统如 何解析字符?例如给定一个长度为 2 字节的编码,系统如何确认它是一个 2 字节的字符还是两个 1 字节的字 符? 对于以上问题,一种直接的解决方案是将所有字符存储为等长的编码。如图 3‑7 所示,“Hello”中的每个字 符占用 1 字节,“算法”中的每个字符占用 2 字节。我们可以通过高位填 0 将“Hello 算法”中的所有字符都 编码为 2 字节长度。这样系统就可以每隔0 码力 | 377 页 | 17.56 MB | 1 年前3
Hello 算法 1.0.0b5 Dart版数据模型,其用于包 括 Linux 和 macOS 在内的 Unix 64 位操作系统。 ‧ 字符 char 的大小在 C 和 C++ 中为 1 字节,在大多数编程语言中取决于特定的字符编码方法,详见“字 符编码”章节。 ‧ 即使表示布尔量仅需 1 位(0 或 1),它在内存中通常被存储为 1 字节。这是因为现代计算机 CPU 通常 将 1 字节作为最小寻址内存单元。 那么,基本数据类型与数据结构之 位二进制数(即一个字节的 低 7 位)表示一个字符,最多能够表示 128 个不同的字符。如图 3‑6 所示,ASCII 码包括英文字母的大小写、 数字 0 ~ 9、一些标点符号,以及一些控制字符(如换行符和制表符)。 图 3‑6 ASCII 码 然而,ASCII 码仅能够表示英文。随着计算机的全球化,诞生了一种能够表示更多语言的字符集「EASCII」。 它在 ASCII 的 7 位基础上扩展到 8 位,能够表示 字符集,将世界范围内的所有语言和符号都收录其 中,不就可以解决跨语言环境和乱码问题了吗?在这种想法的驱动下,一个大而全的字符集 Unicode 应运而 生。 「Unicode」的全称为“统一字符编码”,理论上能容纳一百多万个字符。它致力于将全球范围内的字符纳入 到统一的字符集之中,提供一种通用的字符集来处理和显示各种语言文字,减少因为编码标准不同而产生的 乱码问题。 自 1991 年发布以来,Unicode0 码力 | 376 页 | 30.67 MB | 1 年前3
Hello 算法 1.2.0 繁体中文 Dart 版,則以上函式的操作數量為: ?(?) = 3 + 2? ?(?) 是一次函式,說明其執行時間的增長趨勢是線性的,因此它的時間複雜度是線性階。 我們將線性階的時間複雜度記為 ?(?) ,這個數學符號稱為大 ? 記號(big‑? notation),表示函式 ?(?) 的 漸近上界(asymptotic upper bound)。 時間複雜度分析本質上是計算“操作數量 ?(?)”的漸近上界,它具有明確的數學定義。 但對於較為複雜的演算法,計算平均時間複雜度往往比較困難,因為很難分析出在資料分佈下的整體數學期 望。在這種情況下,我們通常使用最差時間複雜度作為演算法效率的評判標準。 為什麼很少看到 Θ 符號? 可能由於 ? 符號過於朗朗上口,因此我們常常使用它來表示平均時間複雜度。但從嚴格意義上講,這 種做法並不規範。在本書和其他資料中,若遇到類似“平均時間複雜度 ?(?)”的表述,請將其直接 理解為 Θ(?) 時間複雜度用於衡量演算法執行時間隨資料量增長的趨勢,可以有效評估演算法效率,但在某些情況 下可能失效,如在輸入的資料量較小或時間複雜度相同時,無法精確對比演算法效率的優劣。 ‧ 最差時間複雜度使用大 ? 符號表示,對應函式漸近上界,反映當 ? 趨向正無窮時,操作數量 ?(?) 的 增長級別。 ‧ 推算時間複雜度分為兩步,首先統計操作數量,然後判斷漸近上界。 ‧ 常見時間複雜度從低到高排列有 ?(1)、0 码力 | 378 页 | 18.77 MB | 10 月前3
共 5 条
- 1













