Hello 算法 1.1.0 Dart版是找一台计算机,运行这两个算法,并监控记录它们的运行时间和内存占用情况。这种评估方式能够反映真 实情况,但也存在较大的局限性。 一方面,难以排除测试环境的干扰因素。硬件配置会影响算法的性能。比如在某台计算机中,算法 A 的运行 时间比算法 B 短;但在另一台配置不同的计算机中,可能得到相反的测试结果。这意味着我们需要在各种机 器上进行测试,统计平均效率,而这是不现实的。 另一方面,展开完整测试非常耗费资源。 者的优劣并根据情境选择合适的方 法至关重要。 2.3 时间复杂度 运行时间可以直观且准确地反映算法的效率。如果我们想准确预估一段代码的运行时间,应该如何操作呢? 1. 确定运行平台,包括硬件配置、编程语言、系统环境等,这些因素都会影响代码的运行效率。 2. 评估各种计算操作所需的运行时间,例如加法操作 + 需要 1 ns ,乘法操作 * 需要 10 ns ,打印操作 print() 需要 和缓存的使用效率,进而影响算法程序的整体性能。 4.4.1 计算机存储设备 计算机中包括三种类型的存储设备:硬盘(hard disk)、内存(random‑access memory, RAM)、缓存(cache memory)。表 4‑2 展示了它们在计算机系统中的不同角色和性能特点。 表 4‑2 计算机的存储设备 硬盘 内存 缓存 用途 长期存储数据,包括操作系统、 程序、文件等0 码力 | 378 页 | 18.45 MB | 1 年前3
Hello 算法 1.0.0 Dart版是找一台计算机,运行这两个算法,并监控记录它们的运行时间和内存占用情况。这种评估方式能够反映真 实情况,但也存在较大的局限性。 一方面,难以排除测试环境的干扰因素。硬件配置会影响算法的性能。比如在某台计算机中,算法 A 的运行 时间比算法 B 短;但在另一台配置不同的计算机中,可能得到相反的测试结果。这意味着我们需要在各种机 器上进行测试,统计平均效率,而这是不现实的。 另一方面,展开完整测试非常耗费资源。 者的优劣并根据情境选择合适的方 法至关重要。 2.3 时间复杂度 运行时间可以直观且准确地反映算法的效率。如果我们想准确预估一段代码的运行时间,应该如何操作呢? 1. 确定运行平台,包括硬件配置、编程语言、系统环境等,这些因素都会影响代码的运行效率。 2. 评估各种计算操作所需的运行时间,例如加法操作 + 需要 1 ns ,乘法操作 * 需要 10 ns ,打印操作 print() 需要 缓存的使用效率,进而影响算法程序的整体性能。 4.4.1 计算机存储设备 计算机中包括三种类型的存储设备:「硬盘 hard disk」、「内存 random‑access memory, RAM」、「缓存 cache memory」。表 4‑2 展示了它们在计算机系统中的不同角色和性能特点。 表 4‑2 计算机的存储设备 硬盘 内存 缓存 用途 长期存储数据,包括操作系统、 程序、文件等0 码力 | 377 页 | 17.56 MB | 1 年前3
Hello 算法 1.2.0 简体中文 Dart 版法的效率。最直接的方法 是找一台计算机,运行这两个算法,并监控记录它们的运行时间和内存占用情况。这种评估方式能够反映真 实情况,但也存在较大的局限性。 一方面,难以排除测试环境的干扰因素。硬件配置会影响算法的性能表现。比如一个算法的并行度较高,那 么它就更适合在多核 CPU 上运行,一个算法的内存操作密集,那么它在高性能内存上的表现就会更好。也 就是说,算法在不同的机器上的测试结果可能是 者的优劣并根据情境选择合适的方 法至关重要。 2.3 时间复杂度 运行时间可以直观且准确地反映算法的效率。如果我们想准确预估一段代码的运行时间,应该如何操作呢? 1. 确定运行平台,包括硬件配置、编程语言、系统环境等,这些因素都会影响代码的运行效率。 2. 评估各种计算操作所需的运行时间,例如加法操作 + 需要 1 ns ,乘法操作 * 需要 10 ns ,打印操作 print() 需要 和缓存的使用效率,进而影响算法程序的整体性能。 4.4.1 计算机存储设备 计算机中包括三种类型的存储设备:硬盘(hard disk)、内存(random‑access memory, RAM)、缓存(cache memory)。表 4‑2 展示了它们在计算机系统中的不同角色和性能特点。 表 4‑2 计算机的存储设备 硬盘 内存 缓存 用途 长期存储数据,包括操作系统、 程序、文件等0 码力 | 378 页 | 18.46 MB | 10 月前3
Hello 算法 1.0.0b5 Dart版是找一台计算机,运行这两个算法,并监控记录它们的运行时间和内存占用情况。这种评估方式能够反映真 实情况,但也存在较大局限性。 一方面,难以排除测试环境的干扰因素。硬件配置会影响算法的性能表现。比如在某台计算机中,算法 A 的 运行时间比算法 B 短;但在另一台配置不同的计算机中,我们可能得到相反的测试结果。这意味着我们需要 在各种机器上进行测试,统计平均效率,而这是不现实的。 另一方面,展开完整测试非常耗费 因为它们非常适合用分治思想进行分 析。 2.3 时间复杂度 运行时间可以直观且准确地反映算法的效率。如果我们想要准确预估一段代码的运行时间,应该如何操作 呢? 1. 确定运行平台,包括硬件配置、编程语言、系统环境等,这些因素都会影响代码的运行效率。 2. 评估各种计算操作所需的运行时间,例如加法操作 + 需要 1 ns,乘法操作 * 需要 10 ns,打印操作 print() 需要 5 的顺序关系。 ‧ 树形结构:树、堆、哈希表,元素之间是一对多的关系。 ‧ 网状结构:图,元素之间是多对多的关系。 3.1.2 物理结构:连续与离散 在计算机中,内存和硬盘是两种主要的存储硬件设备。硬盘主要用于长期存储数据,容量较大(通常可达到 TB 级别)、速度较慢。内存用于运行程序时暂存数据,速度较快,但容量较小(通常为 GB 级别)。 第 3 章 数据结构 hello‑algo.com0 码力 | 376 页 | 30.67 MB | 1 年前3
Hello 算法 1.2.0 繁体中文 Dart 版效率。最直接 的方法是找一臺計算機,執行這兩個演算法,並監控記錄它們的執行時間和記憶體佔用情況。這種評估方式 能夠反映真實情況,但也存在較大的侷限性。 一方面,難以排除測試環境的干擾因素。硬體配置會影響演算法的效能表現。比如一個演算法的並行度較高, 那麼它就更適合在多核 CPU 上執行,一個演算法的記憶體操作密集,那麼它在高效能記憶體上的表現就會 更好。也就是說,演算法在不同的機器上的測 並根據情境選擇合適 的方法至關重要。 2.3 時間複雜度 執行時間可以直觀且準確地反映演算法的效率。如果我們想準確預估一段程式碼的執行時間,應該如何操作 呢? 1. 確定執行平臺,包括硬體配置、程式語言、系統環境等,這些因素都會影響程式碼的執行效率。 2. 評估各種計算操作所需的執行時間,例如加法操作 + 需要 1 ns ,乘法操作 * 需要 10 ns ,列印操作 print() 需要 Extension Pack 。 3.(可選)在命令列輸入 pip install black ,安裝程式碼格式化工具。 2. C/C++ 環境 1. Windows 系統需要安裝 MinGW(配置教程);MacOS 自帶 Clang ,無須安裝。 2. 在 VS Code 的擴充功能市場中搜索 c++ ,安裝 C/C++ Extension Pack 。 3.(可 選) 開 啟 Settings0 码力 | 378 页 | 18.77 MB | 10 月前3
共 5 条
- 1













