Hello 算法 1.2.0 简体中文 Dart 版如果把具体的工作技能比作是武功的“招式”的话,那么基础科目应该更像是“内功”。 我认为学算法(以及其他基础科目)的意义不是在于在工作中从零实现它,而是基于学到的知识,在解决问 题时能够作出专业的反应和判断,从而提升工作的整体质量。举一个简单例子,每种编程语言都内置了排序 函数: ‧ 如果我们没有学过数据结构与算法,那么给定任何数据,我们可能都塞给这个排序函数去做了。运行顺 畅、性能不错,看上去并没有什么问题。 C 的时间复杂度相同,但实际运行时间差别很 大。同样,尽管算法 B 的时间复杂度比 C 高,但在输入数据大小 ? 较小时,算法 B 明显优于算法 C 。对 于此类情况,我们时常难以仅凭时间复杂度判断算法效率的高低。当然,尽管存在上述问题,复杂度分 析仍然是评判算法效率最有效且常用的方法。 2.3.2 函数渐近上界 给定一个输入大小为 ? 的函数: void algorithm(int n) 不断的 实践中,就可以逐渐领悟其数学意义。 根据定义,确定 ?(?) 之后,我们便可得到时间复杂度 ?(?(?)) 。那么如何确定渐近上界 ?(?) 呢?总体分 为两步:首先统计操作数量,然后判断渐近上界。 1. 第一步:统计操作数量 针对代码,逐行从上到下计算即可。然而,由于上述 ? ⋅ ?(?) 中的常数项 ? 可以取任意大小,因此操作数量 ?(?) 中的各种系数、常数项都可以忽略。0 码力 | 378 页 | 18.46 MB | 10 月前3
Hello 算法 1.1.0 Dart版和 C 的时间复杂度相同,但实际运行时间差别很 大。同样,尽管算法 B 的时间复杂度比 C 高,但在输入数据大小 ? 较小时,算法 B 明显优于算法 C 。在 这些情况下,我们很难仅凭时间复杂度判断算法效率的高低。当然,尽管存在上述问题,复杂度分析仍 然是评判算法效率最有效且常用的方法。 2.3.2 函数渐近上界 给定一个输入大小为 ? 的函数: void algorithm(int n) 不断的 实践中,就可以逐渐领悟其数学意义。 根据定义,确定 ?(?) 之后,我们便可得到时间复杂度 ?(?(?)) 。那么如何确定渐近上界 ?(?) 呢?总体分 为两步:首先统计操作数量,然后判断渐近上界。 1. 第一步:统计操作数量 针对代码,逐行从上到下计算即可。然而,由于上述 ? ⋅ ?(?) 中的常数项 ? 可以取任意大小,因此操作数量 ?(?) 中的各种系数、常数项都可以忽略。 。 ?(?) = 2?(? + 1) + (5? + 1) + 2 完整统计 (‑.‑|||) = 2?2 + 7? + 3 ?(?) = ?2 + ? 偷懒统计 (o.O) 2. 第二步:判断渐近上界 时间复杂度由 ?(?) 中最高阶的项来决定。这是因为在 ? 趋于无穷大时,最高阶的项将发挥主导作用,其他 项的影响都可以忽略。 表 2‑2 展示了一些例子,其中一些夸张的值是为了强调“系数无法撼动阶数”这一结论。当0 码力 | 378 页 | 18.45 MB | 1 年前3
Hello 算法 1.0.0 Dart版和 C 的时间复杂度相同,但实际运行时间差别很 大。同样,尽管算法 B 的时间复杂度比 C 高,但在输入数据大小 ? 较小时,算法 B 明显优于算法 C 。在 这些情况下,我们很难仅凭时间复杂度判断算法效率的高低。当然,尽管存在上述问题,复杂度分析仍 然是评判算法效率最有效且常用的方法。 2.3.2 函数渐近上界 给定一个输入大小为 ? 的函数: void algorithm(int n) 不断的 实践中,就可以逐渐领悟其数学意义。 根据定义,确定 ?(?) 之后,我们便可得到时间复杂度 ?(?(?)) 。那么如何确定渐近上界 ?(?) 呢?总体分 为两步:首先统计操作数量,然后判断渐近上界。 1. 第一步:统计操作数量 针对代码,逐行从上到下计算即可。然而,由于上述 ? ⋅ ?(?) 中的常数项 ? 可以取任意大小,因此操作数量 ?(?) 中的各种系数、常数项都可以忽略。 。 ?(?) = 2?(? + 1) + (5? + 1) + 2 完整统计 (‑.‑|||) = 2?2 + 7? + 3 ?(?) = ?2 + ? 偷懒统计 (o.O) 2. 第二步:判断渐近上界 时间复杂度由 ?(?) 中最高阶的项来决定。这是因为在 ? 趋于无穷大时,最高阶的项将发挥主导作用,其他 项的影响都可以忽略。 表 2‑2 展示了一些例子,其中一些夸张的值是为了强调“系数无法撼动阶数”这一结论。当0 码力 | 377 页 | 17.56 MB | 1 年前3
Hello 算法 1.0.0b5 Dart版和 C 的时间复杂度相同,但实际运行时间差别很 大。同样,尽管算法 B 的时间复杂度比 C 高,但在输入数据大小 ? 较小时,算法 B 明显优于算法 C 。在 这些情况下,我们很难仅凭时间复杂度判断算法效率的高低。当然,尽管存在上述问题,复杂度分析仍 然是评判算法效率最有效且常用的方法。 2.3.2 函数渐近上界 给定一个输入大小为 ? 的函数: void algorithm(int n) 要掌握 推算方法,数学意义就可以逐渐领悟。 根据定义,确定 ?(?) 之后,我们便可得到时间复杂度 ?(?(?)) 。那么如何确定渐近上界 ?(?) 呢?总体分 为两步:首先统计操作数量,然后判断渐近上界。 1. 第一步:统计操作数量 针对代码,逐行从上到下计算即可。然而,由于上述 ? ⋅ ?(?) 中的常数项 ? 可以取任意大小,因此操作数量 ?(?) 中的各种系数、常数项都可以被忽略 。 ?(?) = 2?(? + 1) + (5? + 1) + 2 完整统计 (‑.‑|||) = 2?2 + 7? + 3 ?(?) = ?2 + ? 偷懒统计 (o.O) 2. 第二步:判断渐近上界 时间复杂度由多项式 ?(?) 中最高阶的项来决定。这是因为在 ? 趋于无穷大时,最高阶的项将发挥主导作用, 其他项的影响都可以被忽略。 第 2 章 复杂度分析 hello‑algo.com0 码力 | 376 页 | 30.67 MB | 1 年前3
共 4 条
- 1













