积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部综合其他(7)人工智能(7)

语言

全部英语(6)中文(简体)(1)

格式

全部PDF文档 PDF(7)
 
本次搜索耗时 0.022 秒,为您找到相关结果约 7 个.
  • 全部
  • 综合其他
  • 人工智能
  • 全部
  • 英语
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 OpenAI 《A practical guide to building agents》

    prompts for distinct use cases, use a single flexible base prompt that accepts policy variables. This template approach adapts easily to various contexts, significantly simplifying maintenance and evaluation behavior). 
 You can set up guardrails that address risks you’ve already identified for your use case and layer 
 in additional ones as you uncover new vulnerabilities. Guardrails are a critical component of any guardrails Set up guardrails that address the risks you’ve already identified for your use case and layer in additional ones as you uncover new vulnerabilities. We’ve found the following heuristic to be
    0 码力 | 34 页 | 7.00 MB | 5 月前
    3
  • pdf文档 Google 《Prompt Engineering v7》

    task or input, which is dynamic. • Role prompt: Frames the model’s output style and voice. It adds a layer of specificity and personality. Prompt Engineering February 2025 19 Distinguishing between system ). Prompt Engineering February 2025 65 We recommend creating a Google Sheet with Table 21 as a template. The advantages of this approach are that you have a complete record when you inevitably have to Prompt [Write all the full prompt] Output [Write out the output or multiple outputs] Table 21. A template for documenting prompts Summary This whitepaper discusses prompt engineering. We learned various
    0 码力 | 68 页 | 6.50 MB | 6 月前
    3
  • pdf文档 DeepSeek-V2: A Strong, Economical, and Efficient Mixture-of-Experts Language Model

    will introduce the details of MLA and DeepSeekMoE in this section. For other tiny details (e.g., layer normalization and the activation function in FFNs), unless specifically stated, DeepSeek-V2 follows be the dimension per head, and h? ∈ R? be the attention input of the ?-th token at an attention layer. Standard MHA first produces q?, k?, v? ∈ R?ℎ?ℎ through three matrices ??,? ?,?? ∈ R?ℎ?ℎ×?, respectively: expert; ??,? is the token- to-expert affinity; e? is the centroid of the ?-th routed expert in this layer; and Topk(·, ?) denotes the set comprising ? highest scores among the affinity scores calculated for
    0 码力 | 52 页 | 1.23 MB | 1 年前
    3
  • pdf文档 Trends Artificial Intelligence

    tools, or orchestrating workflows across platforms, often using natural language as their command layer. This shift mirrors a broader historical pattern in technology. Just as the early 2000s saw static ecosystems around autonomous execution. What was once a messaging interface is becoming an action layer.90 Source: Google Trends via Glimpse (5/15/24), OpenAI (3/25) AI Agent Interest (Google Searches) usage increases – and as usage increases, so does demand for compute. We’re seeing it across every layer: more queries, more models, more tokens per task. The appetite for AI isn't slowing down. It’s growing
    0 码力 | 340 页 | 12.14 MB | 4 月前
    3
  • pdf文档 OpenAI - AI in the Enterprise

    America’s largest ecommerce and fintech company, partnered with 
 OpenAI to build a development platform layer to solve that. It’s called Verdi, and it’s powered 
 by GPT-4o and GPT-4o mini. Today, it helps their
    0 码力 | 25 页 | 9.48 MB | 5 月前
    3
  • pdf文档 Bring Your Own Codegen to TVM

    Implement a Python template to indicate if an op can be supported by your codegen ● Template path: python/tvm/relay/op/contrib/ /extern_op.py ● Boolean functions in the template def conv2d(attrs
    0 码力 | 19 页 | 504.69 KB | 5 月前
    3
  • pdf文档 Deepseek R1 本地部署完全手册

    PARAMETER num_gpu 28 # 每块RTX 4090加载7层(共4卡) PARAMETER num_ctx 2048 PARAMETER temperature 0.6 TEMPLATE "<|end▁of▁thinking|>{{ .Prompt }}<|end▁of▁thinking|>" ollama create DeepSeek-R1-UD-IQ1_M -f DeepSeekQ1_Modelfile
    0 码力 | 7 页 | 932.77 KB | 7 月前
    3
共 7 条
  • 1
前往
页
相关搜索词
OpenAIpracticalguidetobuildingagentsGooglePromptEngineeringv7DeepSeekV2StrongEconomicalandEfficientMixtureofExpertsLanguageModelTrendsArtificialIntelligenceAIintheEnterpriseBringYourOwnCodegenTVMDeepseekR1本地部署完全手册
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩