积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部综合其他(24)人工智能(24)

语言

全部中文(简体)(10)英语(7)zh(4)中文(简体)(2)ro(1)

格式

全部PDF文档 PDF(24)
 
本次搜索耗时 0.022 秒,为您找到相关结果约 24 个.
  • 全部
  • 综合其他
  • 人工智能
  • 全部
  • 中文(简体)
  • 英语
  • zh
  • 中文(简体)
  • ro
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Google 《Prompt Engineering v7》

    this whitepaper focuses on writing prompts for the Gemini model within Vertex AI or by using the API, because by prompting the model directly you will have access to the configuration such as temperature in action, you need to write some code. In code Snippet 1 I am using the langchain framework for Python, together with VertexAI (google-cloud-aiplatform) and the google-search-results pip packages. Prompt create a (free) SerpAPI key from https://serpapi.com/manage- api-key and set an environment variable SERPAPI_API_KEY. Next let’s write some Python code, with the task for the LLM to figure out: How many children
    0 码力 | 68 页 | 6.50 MB | 7 月前
    3
  • pdf文档 OpenAI 《A practical guide to building agents》

    also implement the same concepts using your preferred library or building directly from scratch. Python 1 2 3 4 5 6 weather_agent = Agent( name= instructions= tools=[get_weather], ) , here’s how you would equip the agent defined above with a series of tools when using the Agents SDK: Python 1 2 3 4 5 6 7 8 8 10 11 12 from import def agents Agent, WebSearchTool, function_tool For example, a step might instruct the agent to ask the user for their order number or to call an API to retrieve account details. Being explicit about the action (and even the wording of a user-facing
    0 码力 | 34 页 | 7.00 MB | 6 月前
    3
  • pdf文档 清华大学 DeepSeek+DeepResearch 让科研像聊天一样简单

    何静 能做什么? 要怎么做? 效果如何? 一 能做什么? 数据挖掘 数据分析 数据采集 数据处理 数据可视化 AIGC 数据应用 通过编写爬虫代码、访问数据库、读取文件、调用API等方式,采 集社交媒体数据、数据库内容、文本数据、接口数据等。 通过数据清洗、数据集成、数据变换、特征工程等方式,实 现数据纠错、数据整合、格式转换、特征提取等。 对数据进行诊断、预测、关联、聚类分析,常用于问题 1、阅读网页源代码,提取特定网页内容; 2、撰写python脚本; 3、提取并合并网址; 4、提取网址内容; 5、写入文件。 任务 你需要完成以下两个任务: 1.阅读网页【网址】源代码【对应网页源代码】。提取所 有包含“春运2025丨X月X日,全社会跨区域人员流动量完 成X万人次”的网址进行去重、筛选,合并成网址列表 2.撰写python脚本,基于步骤1输出的网址列表提取所有网 址内容“截至目前 量、公路人员流动量、水路客运量、民航客运量等)”完 成数据提取并写入文件“2025春运数据.txt” Open AI o3mini 响应速度快,能够高效提 取所有需求链接,输出完 整可运行python脚本,代 码运行后生成文件,但数 据采集结果为空。 DeepSeek R1 能够提取所有网址并进行 筛选、去重,所撰写代码 运行后完成数据爬虫任务, 所获取数据准确,少量数 据有所遗漏。
    0 码力 | 85 页 | 8.31 MB | 8 月前
    3
  • pdf文档 开源中国 2023 大模型(LLM)技术报告

    Tuning) 大模型框架提供基本能力和普适性,而微调 则是实现特定应用和优化性能的关键环节 大模型训练平台&工具 提供了在不同硬件和环境中训练大语言模型 所需的基础设施和支持 编程语言 以 Python 为代表 5 / 32 LLM 基础设施:向量数据库/数据库向量支持 向量数据库是专门用于存储和检索向量数据的数据库,它可以为 LLM 提供高效的存储和检索能力。通过数据向量化,实现了 在 在广泛的应用场景中都能发挥出色的性能。 8 / 32 LLM 基础设施:大模型框架及微调 (Fine Tuning) 大模型框架有哪些特点: :大模型开发框架通过提供高 层次的 API 简化了复杂模型的构建过程。这 些 API 抽象掉了许多底层细节,使开发者能 够专注于模型的设计和训练策略。 :这些框架经过优化,以充分利用 GPU、TPU 等高性能计算硬件,以加速模型 的训练和推理过程。 :为了处理大型数据集和大规模参 在企业环境中处理模型部署和系 统集成方面常见。JavaScript 适用于 Web 环境的 LLM 应用。 13 / 32 LLM 基础设施:编程语言 2023 年是大语言模型 (LLM) 之年,Python 作为人工智能领域使用度最高的编程语言,在 2023 年到底有多火? 从各种开发者报告、编程语言榜单来看。只要出现有关编程语言流行度的排名, ,而 Java、C/C++ 等 同样在 LLM 开发中发挥关键作用的语言紧随其后。
    0 码力 | 32 页 | 13.09 MB | 1 年前
    3
  • pdf文档 DeepSeek-V2: A Strong, Economical, and Efficient Mixture-of-Experts Language Model

    their API service or open-weighted model, instead of referring to the results reported in their original papers. Suffixes of Erniebot-4.0 and Moonshot denote the timestamps when we called their API. 4.4 Problem: Evaluate $\log_21$. Solution: Table 27 | An example of MATH. 45 PROMPT You are an expert Python programmer, and here is your task: Write a function to find the similar elements from the given two tuple(set(test_tup1) & set(test_tup2)) return (res) [DONE] You are an expert Python programmer, and here is your task: Write a python function to identify non-prime numbers. Your code should pass these tests:
    0 码力 | 52 页 | 1.23 MB | 1 年前
    3
  • pdf文档 清华大学 普通人如何抓住DeepSeek红利

    素数位数关系理论及其思考—— 邵宇捷 各思路具体化及 Python验算 人类提供已有参考案例(拉马努金数、 阿姆斯特朗数等) AI提出可能思路 要求AI迭代调整或人 类介入提供具体设想 AI发现魔法数字的一般过程 思路可用,并非刻 意构造 有刻意构造嫌疑 方案可行 输出结果及理论 体系化 方案不可行 Python验算 无符合数字 有符合数字 如何使用DeepSeek处理生活中的事务 ! 场景1:职场妈妈的晨间战役(日常琐事管理) 优先级排序(幼儿园事务>会议准备>生活采购) 生成最优动线:地图标注幼儿园/干洗店/超市与公司的位置关系 即时服务对接: ✓ 调用社区跑腿API下单手工材料配送 ✓ 接入干洗店智能柜系统预约取件码 ✓ 生鲜平台比价后自动补货牛奶 ③ 会议准备: 自动提取上周销售数据生成可视化图表框架 调取历史报告模板进行语义重组 ④ 风险预警: 依赖提示语补偿能力短板(如要求分 步思考 、提供示例) 。 策略类型 定义与目标 适用场景 示例(推理模型适用) 优势与风险 指令驱动 直接给出明确步骤或 格式要求 简单任务 、需快速执行 “用Python编写快速排序函 数, 输出需包含注释 。 ” 结果精准高效 限制模型自主优化空 间 需求导向 描述问题背景与目标, 由模型规划解决路径 复杂问题 、需模型自主 推理
    0 码力 | 65 页 | 4.47 MB | 8 月前
    3
  • pdf文档 Deploy VTA on Intel FPGA

    Navigate to 3rdparty/cma and build kernel module Copy kernel module to DE10-Nano and Install Module CMA API Reference©2019 HARMAN INTERNATIONAL INDUSTRIES, INCORPORATED 7 Software - Driver Cyclone V & Arria Replace the zImage in SDCard Image Step 4.2: Extract rootfs_supplement.tgz to rootfs to install Python3 Step 4.3: Copy cma.ko to home directory Step 5: Cross compile TVM with USE_VTA_FPGA flag ON Step .sof file programmed into hardware Step 11: Evaluate the unit test script test_vta_insn.py with python3. Hooray!©2019 HARMAN INTERNATIONAL INDUSTRIES, INCORPORATED ACCELERATED VISUAL PERCEPTION LIANGFU
    0 码力 | 12 页 | 1.35 MB | 6 月前
    3
  • pdf文档 OpenAI - AI in the Enterprise

    capabilities. Our Applied Team turns those models into products, like ChatGPT Enterprise and our API. And our Deployment Team takes these products into companies to address their most pressing use cases and resources in customizing and training their own AI models. OpenAI has invested heavily in our API to make it easier to customize and fine-tune models—whether as a self-service approach or using our developers unify and accelerate their 
 AI application builds. Verdi integrates language models, Python nodes, and APIs to create a scalable, consistent platform that uses natural language as a central
    0 码力 | 25 页 | 9.48 MB | 6 月前
    3
  • pdf文档 DeepSeek从入门到精通(20250204)

    垃圾内容检测 编程与代码相关 代码调试 • 错 误 分 析 与 修 复 建议 • 代 码 性 能 优 化 提 示 技术文档处理 • API文档生成 • 代码库解释与示 例生成 代码生成 • 根 据 需 求 生 成 代 码片段(Python、 JavaScript) • 自 动 补 全 与 注 释 生成 常规绘图 如何使用DeepSeek? https://chat.deepseek 题,需分步验证结果)。 从“下达指令”到“表达需求” 策略类型 定义与目标 适用场景 示例(推理模型适用) 优势与风险 指令驱动 直接给出明确步骤或 格式要求 简单任务、需快速执行 “用Python编写快速排序函 数,输出需包含注释。” ✅ 结果精准高效 ❌ 限制模型自主优化空 间 需求导向 描述问题背景与目标, 由模型规划解决路径 复杂问题、需模型自主 推理 “我需要优化用户登录流程, 过度约束逻辑(如“按时间顺序列出”) 通用模型 需明确约束目标,避免自由发挥 “写一个包含‘量子’和‘沙漠’ 的短篇小说,不超过200字” 开放式指令(如“自由创作”) 代码生成 推理模型 简洁需求,信任模型逻辑 “用Python实现快速排序” 分步指导(如“先写递归函数”) 通用模型 细化步骤,明确输入输出格式 “先解释快速排序原理,再写出代 码并测试示例” 模糊需求(如“写个排序代码”) 多轮对话 通用模型
    0 码力 | 104 页 | 5.37 MB | 8 月前
    3
  • pdf文档 清华大学 DeepSeek 从入门到精通

    垃圾内容检测 编程与代码相关 代码调试 • 错 误 分 析 与 修 复 建议 • 代 码 性 能 优 化 提 示 技术文档处理 • API文档生成 • 代码库解释与示 例生成 代码生成 • 根 据 需 求 生 成 代 码片段(Python、 JavaScript) • 自 动 补 全 与 注 释 生成 常规绘图 如何使用DeepSeek? 网页端:https://chat 题,需分步验证结果)。 从“下达指令”到“表达需求” 策略类型 定义与目标 适用场景 示例(推理模型适用) 优势与风险 指令驱动 直接给出明确步骤或 格式要求 简单任务、需快速执行 “用Python编写快速排序函 数,输出需包含注释。” ✅ 结果精准高效 ❌ 限制模型自主优化空 间 需求导向 描述问题背景与目标, 由模型规划解决路径 复杂问题、需模型自主 推理 “我需要优化用户登录流程, 过度约束逻辑(如“按时间顺序列出”) 通用模型 需明确约束目标,避免自由发挥 “写一个包含‘量子’和‘沙漠’ 的短篇小说,不超过200字” 开放式指令(如“自由创作”) 代码生成 推理模型 简洁需求,信任模型逻辑 “用Python实现快速排序” 分步指导(如“先写递归函数”) 通用模型 细化步骤,明确输入输出格式 “先解释快速排序原理,再写出代 码并测试示例” 模糊需求(如“写个排序代码”) 多轮对话 通用模型
    0 码力 | 103 页 | 5.40 MB | 9 月前
    3
共 24 条
  • 1
  • 2
  • 3
前往
页
相关搜索词
GooglePromptEngineeringv7OpenAIpracticalguidetobuildingagents清华大学DeepSeekDeepResearch科研开源中国2023模型LLM技术报告V2StrongEconomicalandEfficientMixtureofExpertsLanguageModel清华华大大学普通通人普通人如何抓住红利DeployVTAonIntelFPGAAIintheEnterprise入门精通20250204
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩