积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部综合其他(8)人工智能(8)

语言

全部英语(6)日语(1)zh(1)

格式

全部PDF文档 PDF(8)
 
本次搜索耗时 0.024 秒,为您找到相关结果约 8 个.
  • 全部
  • 综合其他
  • 人工智能
  • 全部
  • 英语
  • 日语
  • zh
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Trends Artificial Intelligence

    Leading USA-Based AI LLM Revenue vs. Compute Expense Note: Figures are estimates. Source: The Information, public estimates 2022 2024 Revenue (Blue) & Compute Expense (Red) +$3.7B -$5B Details on evolution for the global powers. Google’s founding mission (1998) was to ‘organize the world’s information and make it universally accessible and useful.’ Alibaba’s founding mission (1999) was to ‘make open and connected.’ Fast forward to today with the world’s organized, connected and accessible information being supercharged by artificial intelligence, accelerating computing power, and semi-borderless
    0 码力 | 340 页 | 12.14 MB | 5 月前
    3
  • pdf文档 Google 《Prompt Engineering v7》

    used to achieve various kinds of understanding and generation tasks such as text summarization, information extraction, question and answering, text classification, language or code translation, code generation language, classifying a review etc. • Contextual prompting provides specific details or background information relevant to the current conversation or task. It helps the model to understand the nuances of fundamental capabilities and overarching purpose. • Contextual prompt: Provides immediate, task-specific information to guide the response. It’s highly specific to the current task or input, which is dynamic. •
    0 码力 | 68 页 | 6.50 MB | 6 月前
    3
  • pdf文档 DeepSeek-V2: A Strong, Economical, and Efficient Mixture-of-Experts Language Model

    hidden states from other devices. The communication balance loss guarantees a balanced exchange of information among devices, promoting efficient communications. 2.2.4. Token-Dropping Strategy While balance lack of ongoing knowledge updates after pre-training, the possibility of generating non-factual information such as unverified advice, and a chance to produce hallucinations. In addition, since our data et al. Training language models to follow instructions with human feedback. Advances in neural information processing systems, 35:27730–27744, 2022. 24 B. Peng, J. Quesnelle, H. Fan, and E. Shippole.
    0 码力 | 52 页 | 1.23 MB | 1 年前
    3
  • pdf文档 OpenAI 《A practical guide to building agents》

    need three types of tools: Type Description Examples Data Enable agents to retrieve context and information necessary for executing the workflow. Query transaction databases or systems like CRMs, read search the web. Action Enable agents to interact with systems to take actions such as adding new information to databases, updating records, or sending messages. Send emails and texts, update a CRM interactions often create decision points such as how to proceed when a user provides incomplete information 
 or asks an unexpected question. A robust routine anticipates common variations and includes
    0 码力 | 34 页 | 7.00 MB | 6 月前
    3
  • pdf文档 OpenAI - AI in the Enterprise

    use cases. We use iterative deployment to learn quickly from customer use cases and use that information to accelerate product improvements. That means shipping updates regularly, getting feedback, financial advisors more efficient and effective. The premise was simple: If advisors could access information faster and reduce the time spent on repetitive tasks, they could offer more and better insights quality of translations produced 
 by a model. 02 Summarization Evaluating how a model condenses information, using 
 agreed-upon-metrics for accuracy, relevance, and coherence. 03 Human trainers Comparing
    0 码力 | 25 页 | 9.48 MB | 6 月前
    3
  • pdf文档 Facebook -- TVM AWS Meetup Talk

    space (~10 lines of Relay IR) - A few days of work - TVM sampling model running in 30us on single server CPU core - Beat hand-written, highly optimized baselines (https://github.com/mozilla/LPCNet) by
    0 码力 | 11 页 | 3.08 MB | 6 月前
    3
  • pdf文档 Deploy VTA on Intel FPGA

    the compiled TVM to the SDCard Step 7: Install kernel module cma.ko and run apps/vta_rpc/start_rpc_server.sh Step 8: Configure vta/config/de10nano_config.json to vta_config.json Step 9: Go to vta/hardware/intel
    0 码力 | 12 页 | 1.35 MB | 6 月前
    3
  • pdf文档 TVM Meetup: Quantization

    Services, Inc. or its Affiliates. All rights reserved. Evaluation • Intel Cascade Lake 12-core Server • TFLite Pre-quantized Hosted Models© 2019, Amazon Web Services, Inc. or its Affiliates. All rights
    0 码力 | 19 页 | 489.50 KB | 6 月前
    3
共 8 条
  • 1
前往
页
相关搜索词
TrendsArtificialIntelligenceGooglePromptEngineeringv7DeepSeekV2StrongEconomicalandEfficientMixtureofExpertsLanguageModelOpenAIpracticalguidetobuildingagentsAIintheEnterpriseFacebookTVMAWSMeetupTalkDeployVTAonIntelFPGAQuantization
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩