Trends Artificial Intelligence
improve on the points as we all aim to adapt to this evolving journey as knowledge – and its distribution – get leveled up rapidly in new ways. Special thanks to Grant Watson and Keeyan Sanjasaz and Momentum22 Knowledge Distribution Evolution = Over ~Six Centuries23 Knowledge Distribution – 1440-1992 = Static + Physical Delivery… Source: Wikimedia Commons Knowledge Distribution Evolution = Over ~Six ~Six Centuries Printing Press – Invented 144024 …Knowledge Distribution – 1993-2021 = Active + Digital Delivery… *The internet is widely agreed to have been ‘publicly released’ in 1993 with release0 码力 | 340 页 | 12.14 MB | 5 月前3
Google 《Prompt Engineering v7》language model input and output, a text prompt (sometimes accompanied by other modalities such as image prompts) is the input the model uses to predict a specific output. You don’t need to be a data scientist generated text. • Top-K sampling selects the top K most likely tokens from the model’s predicted distribution. The higher top-K, the more creative and varied the model’s output; the lower top-K, the more0 码力 | 68 页 | 6.50 MB | 6 月前3
DeepSeek-V2: A Strong, Economical, and Efficient
Mixture-of-Experts Language ModelWe evaluate the generation throughput of DeepSeek-V2 based on the prompt and generation length distribution from the actually deployed DeepSeek 67B service. On a single node with 8 H800 GPUs, DeepSeek-V20 码力 | 52 页 | 1.23 MB | 1 年前3
XDNN TVM - Nov 2019Overlay Processor ˃ DNN Specific Instruction Set Convolution, Max Pool etc. ˃ Any Network, Any Image Size ˃ High Frequency & High Compute Efficiency ˃ Supported on U200 – 3 Instances U250 – 4 Instances Systolic Array Bias ReLU Bias ReLU Bias ReLU Bias ReLU Pooling Pooling Pooling Pooling Image Queue Instruction Buffer Cross Bar Pooling/ EWA© Copyright 2018 Xilinx Xilinx Edge DPU IP (DPUv2) networks >> 4© Copyright 2018 Xilinx Inference Flow >> 5 MxNet CPU Layers FPGA Layers Runtime Image Model Weights Calibration Set Quantizer Compiler Tensor Graph Optimization Framework Tensor Graph0 码力 | 16 页 | 3.35 MB | 6 月前3
普通人学AI指南码、运行时、系统工具、系统库和设置。 2. 镜像(Image):用于创建容器的只读模板。一个镜像可以包含完整的操作 系统环境。 3. Dockerfile:定义镜像内容的文本文件,包含了构建镜像的所有指令。 4. Docker Hub:公共的 Docker 镜像仓库,用于存储和分发 Docker 镜像。 5. 拉取镜像:docker pull <image_name> 6. 构建镜像:在包含 Dockerfile Dockerfile 目录中运行:docker build -t <image_name> . 常用命令: 1. 列出正在运行的容器:docker ps 2. 列出所有容器:docker ps -a 3. 停止一个容器:docker stop4. 删除一个容器:docker rm 20 4.2.2 下载 docker docker 0 码力 | 42 页 | 8.39 MB | 8 月前3
Facebook -- TVM AWS Meetup Talkrequires 40us sampling net runtime - First PyTorch model used a 3,400us sampling net runtime Image from LPCNetExit, Pursued By A Bear - 3400us (baseline), 40us (target) - 85x speedup - Uh ohEnter general technique, allows clean vectorization - Related work in Gibiansky (2017), Gray (2019), et al. Image from OpenAI- Add relay.nn.sparse_dense for block-sparse matrix multiplication (~50 lines of TVM IR)0 码力 | 11 页 | 3.08 MB | 6 月前3
Deploy VTA on Intel FPGASDCard Image from Terasic (Require Registration) Step 3: Get files from https://github.com/liangfu/de10-nano-supplement Step 4: Extract the files Step 4.1: Replace the zImage in SDCard Image Step 40 码力 | 12 页 | 1.35 MB | 6 月前3
TVM Meetup: Quantizationrights reserved. Frontend Parsers • TFLite Pre-quantized Models • In good shape • Supports all Image Classification PreQuantized hosted models • MXNet Pre-quantized Models • Tested internally with0 码力 | 19 页 | 489.50 KB | 6 月前3
Dynamic Model in TVMModels with dynamism ● Control flow (if, loop, etc) ● Dynamic shapes ○ Dynamic inputs: batch size, image size, sequence length, etc. ○ Output shape of some ops are data dependent: arange, nms, etc. ○ Control0 码力 | 24 页 | 417.46 KB | 6 月前3
共 9 条
- 1













