积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部综合其他(12)人工智能(12)

语言

全部英语(7)zh(3)[zh](1)中文(简体)(1)

格式

全部PDF文档 PDF(12)
 
本次搜索耗时 0.020 秒,为您找到相关结果约 12 个.
  • 全部
  • 综合其他
  • 人工智能
  • 全部
  • 英语
  • zh
  • [zh]
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Trends Artificial Intelligence

    the points as we all aim to adapt to this evolving journey as knowledge – and its distribution – get leveled up rapidly in new ways. Special thanks to Grant Watson and Keeyan Sanjasaz and BOND colleagues • AI & Physical World Ramps = Fast + Data-Driven • Global Internet User Ramps Powered by AI from Get-Go = Growth We Have Not Seen Likes of Before • AI & Work Evolution = Real + Rapid 3 1 2 3 4 Operating Zone Market Share Source: YipitData (4/25) Global Internet User Ramps Powered by AI from Get-Go = Growth We Have Not Seen Likes of Before 7 Leading USA-Based LLM App Users by Region Note:
    0 码力 | 340 页 | 12.14 MB | 4 月前
    3
  • pdf文档 Google 《Prompt Engineering v7》

    same highest predicted probability, depending on how tiebreaking is implemented you may not always get the same output with temperature 0). Temperatures close to the max tend to create more random output specific techniques that take advantage of how LLMs are trained and how LLMs work will help you get the relevant results from LLMs Now that we understand what prompt engineering is and what it takes the simplest type of prompt. It only provides a description of a task and some text for the LLM to get started with. This input could be anything: a question, a start of a story, or instructions. The name
    0 码力 | 68 页 | 6.50 MB | 6 月前
    3
  • pdf文档 OpenAI - AI in the Enterprise

    Embed AI into your products 9 Start now and invest early 11 Customize and fine-tune your models 13 Get AI in the hands of experts 16 Unblock your developers 18 Set bold automation goals 21 Conclusion early The sooner you get going, the more the value compounds. 04 Customize and 
 tune your models Tuning AI to the specifics of your use cases can dramatically increase value. 05 Get AI in the hands 
 or re-checking means your teams can focus on high-value tasks. 15 AI in the EnterpriseLesson 5 Get AI in the hands of experts BBVA takes an expert-led approach to AI Your employees are closest to
    0 码力 | 25 页 | 9.48 MB | 5 月前
    3
  • pdf文档 DeepSeek-V2: A Strong, Economical, and Efficient Mixture-of-Experts Language Model

    for it. After pre-training, we also perform long context extension and SFT for DeepSeek-V2-Lite and get a chat model called DeepSeek-V2-Lite Chat. Benchmark DeepSeek DeepSeekMoE DeepSeek-V2-Lite 7B Chat not True". Let’s evaluate A: A = not not True = not (not True) = not False = True. Plugging in A, we get: Z = not ( ( A ) ) = not ( ( True ) ) = not True = False. So the answer is False. Q: True and False evaluate B: B = not True and True = not (True and True) = not (True) = False. Plugging in A and B, we get: Z = A and B = False and False = False. So the answer is False. Q: not not ( not ( False ) ) is A:
    0 码力 | 52 页 | 1.23 MB | 1 年前
    3
  • pdf文档 亿联TVM部署

    our network, but also get a good performance gain by autotuning 3. TVM can support many kinds of hardware platform: Intel/arm CPU, Nividia/arm GPU, VTA…5 �������������� 1. Get a .log file from the py options = options if options else [ “-shared”, “-fPIC”, “-m32”] b. python tensorflow_blur.py to get the .log c. Use the .log, with target=“llvm –mcpu=i686 –mtriple=i686-linux-gnu” then TVM_NDK_CC=“clang
    0 码力 | 6 页 | 1.96 MB | 5 月前
    3
  • pdf文档 Deploy VTA on Intel FPGA

    VTA ON INTEL FPGA Step 1: Get DE10-Nano and download & install Quartus Prime 18.1 Lite Edition Step 2: Download SDCard Image from Terasic (Require Registration) Step 3: Get files from https://github vta/config/de10nano_config.json to vta_config.json Step 9: Go to vta/hardware/intel and run make command Step 10: Get the generated .sof file programmed into hardware Step 11: Evaluate the unit test script test_vta_insn
    0 码力 | 12 页 | 1.35 MB | 5 月前
    3
  • pdf文档 Bring Your Own Codegen to TVM

    numpy as np from tvm import relay 2. Load a pretrained network mod, params = relay.testing.mobilenet.get_workload(batch_size=1) 3. Partition and build the network with an external codegen mod = relay.build_extern(mod e>/graph_annotator.py ● Apply the annotator to a workload: mod, params = relay.testing.mobilenet.get_workload(batch_size=1) mod[‘main’] = MyAnnotator().visit(mod[‘main’]) mod = relay.build_extern(mod ata); } (*func_s)(packed_args, out); *rv = out; });}} Load the built shared library Get the corresponding subgraph function Execute the subgraph© 2019, Amazon Web Services, Inc. or its
    0 码力 | 19 页 | 504.69 KB | 5 月前
    3
  • pdf文档 Dynamic Model in TVM

    register_shape_func("concatenate", False) def concatenate_shape_func(attrs, inputs, _): axis = get_const_int(attrs.axis) return [_concatenate_shape_func(inputs, convert(axis))] @script def _con Example input_name = "data" input_shape = [tvm.relay.Any(), 3, 224, 224] dtype = "float32" block = get_model('resnet50_v1', pretrained=True) mod, params = relay.frontend.from_mxnet(block, shape={input_name:
    0 码力 | 24 页 | 417.46 KB | 5 月前
    3
  • pdf文档 OpenAI 《A practical guide to building agents》

    directly from scratch. Python 1 2 3 4 5 6 weather_agent = Agent( name= instructions= tools=[get_weather], ) , "Weather agent" "You are a helpful agent who can talk to users about the weather prompts contain many conditional statements 
 (multiple if-then-else branches), and prompt templates get difficult to scale, consider dividing each logical segment across separate agents. Tool overload
    0 码力 | 34 页 | 7.00 MB | 5 月前
    3
  • pdf文档 PAI & TVM Meetup - Shanghai 20191116

    an input matrix is matrix_aor matrix_b, row_major or col_moajor. 。 Visit the body of ComputeOp to get the indices of input matrices: inadexO, indexI 。 Compare the access indices with the axis/reduce_axis
    0 码力 | 26 页 | 5.82 MB | 5 月前
    3
共 12 条
  • 1
  • 2
前往
页
相关搜索词
TrendsArtificialIntelligenceGooglePromptEngineeringv7OpenAIAIintheEnterpriseDeepSeekV2StrongEconomicalandEfficientMixtureofExpertsLanguageModel亿联TVM部署DeployVTAonIntelFPGABringYourOwnCodegentoDynamicpracticalguidebuildingagentsPAIMeetupShanghai20191116
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩