积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部综合其他(12)人工智能(12)

语言

全部英语(6)中文(简体)(2)[zh](1)kor(1)ro(1)zh(1)

格式

全部PDF文档 PDF(12)
 
本次搜索耗时 0.019 秒,为您找到相关结果约 12 个.
  • 全部
  • 综合其他
  • 人工智能
  • 全部
  • 英语
  • 中文(简体)
  • [zh]
  • kor
  • ro
  • zh
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Trends Artificial Intelligence

    uncertainty…yet it leads us back to one of our favorite quotes – Statistically speaking, the world doesn’t end that often, from former T. Rowe Price Chairman and CEO Brian Rogers. As investors, we always assume years ending 2022. ‘Tens of billions of units’ refers to the potential device & user base that could end up using AI technology; this includes smartphones, IOT devices, robotics, etc. Source: Weiss et al surpasses the performance of other leading models (GPT- 4o, Claude 3.5) on some reasoning tests 3/23: OpenAI releases GPT-4, a multimodal* model capable of processing both text & images
    0 码力 | 340 页 | 12.14 MB | 5 月前
    3
  • pdf文档 DeepSeek-V2: A Strong, Economical, and Efficient Mixture-of-Experts Language Model

    4 5 6 7 8 9 10 Score Figure 4 | Evaluation results on the “Needle In A Haystack” (NIAH) tests. DeepSeek-V2 performs well across all context window lengths up to 128K. linear computations across a context length of 128K. As shown in Figure 4, the results on the “Needle In A Haystack” (NIAH) tests indicate that DeepSeek-V2 performs well across all context window lengths up to 128K. 3.2. Evaluations Given a positive integer n, return the count of the numbers of n-digit positive integers that start or end with 1. """ Table 26 | An example of HumanEval. 44 PROMPT Problem: Find the domain of the expression
    0 码力 | 52 页 | 1.23 MB | 1 年前
    3
  • pdf文档 Google 《Prompt Engineering v7》

    LLM is operationalized to do this over and over again, adding the previously predicted token to the end of the sequential text for predicting the following token. The next token prediction is based on the great way of documenting prompts. Your prompts will likely go through many iterations before they end up in a codebase, so it’s important to keep track of your prompt engineering work in a disciplined traditional prompt before we compare it with a step back prompt When you set the temperature to 1, you might end up with all kinds of creative writings for a storyline, but it’s also quite random and generic. So
    0 码力 | 68 页 | 6.50 MB | 6 月前
    3
  • pdf文档 Bring Your Own Codegen to TVM

    After Annotation op op op op data weight1 weight3 weight2 output Subgraph begin Subgraph end© 2019, Amazon Web Services, Inc. or its Affiliates. All rights reserved. Option 2: Graph-Level Annotation After Annotation op op op op data weight1 weight3 weight2 output Subgraph begin Subgraph end class WholeGraphAnnotator(ExprMutator): def __init__(self, target): super(WholeGraphAnnotator attrs) if curr_last: . new_call = subgraph_end(new_call, self.target) return new_call© 2019, Amazon Web Services, Inc. or its Affiliates.
    0 码力 | 19 页 | 504.69 KB | 6 月前
    3
  • pdf文档 OctoML OSS 2019 11 8

    ncubator-tvm/pull/3560 了 e, Enables future optimizations fn emain() -,Tensor[tk,),f32] { and end-to-end dynamic Tet tl 引 -。 Let t2 3 memory planning,, storage
    0 码力 | 16 页 | 1.77 MB | 6 月前
    3
  • pdf文档 TVM: Where Are We Going

    Compilers Kenrel Libraries Hardware CuDNN NNPack MKL-DNN Hand optimized Open source, automated end-to- end optimization framework for deep learning.TVM Stack High-Level Differentiable IR Tensor Expression
    0 码力 | 31 页 | 22.64 MB | 6 月前
    3
  • pdf文档 Deepseek R1 本地部署完全手册

    每块RTX 4090加载7层(共4卡) PARAMETER num_ctx 2048 PARAMETER temperature 0.6 TEMPLATE "<|end▁of▁thinking|>{{ .Prompt }}<|end▁of▁thinking|>" ollama create DeepSeek-R1-UD-IQ1_M -f DeepSeekQ1_Modelfile ollama run
    0 码力 | 7 页 | 932.77 KB | 8 月前
    3
  • pdf文档 TVM@AliOS

    。, Add one Hexagon runtimes named as libtvm_hexagon_runtime.so to support parallel. 。 Could run end-to-end TFLite Mobilenet V2 quantized model on Simulator / Device. /NiiOS ! 驱动万物智能 Alios TVM @ Hexagon
    0 码力 | 27 页 | 4.86 MB | 6 月前
    3
  • pdf文档 OpenAI - AI in the Enterprise

    of record on behalf of users, without technical instructions 
 or API connections. The result: end-to-end automation, freeing teams from repetitive tasks and boosting efficiency across the enterprise
    0 码力 | 25 页 | 9.48 MB | 6 月前
    3
  • pdf文档 OpenAI 《A practical guide to building agents》

    tasks with a high degree of autonomy. Unlike simpler LLM applications, agents execute workflows end-to-end, making them well-suited for use cases that involve complex decisions, unstructured data, or brittle
    0 码力 | 34 页 | 7.00 MB | 6 月前
    3
共 12 条
  • 1
  • 2
前往
页
相关搜索词
TrendsArtificialIntelligenceDeepSeekV2StrongEconomicalandEfficientMixtureofExpertsLanguageModelGooglePromptEngineeringv7BringYourOwnCodegentoTVMOctoMLOSS201911WhereAreWeGoingDeepseekR1本地部署完全手册AliOSOpenAIAIintheEnterprisepracticalguidebuildingagents
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩