积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部综合其他(12)人工智能(12)

语言

全部英语(5)zh(3)日语(1)kor(1)中文(简体)(1)中文(简体)(1)

格式

全部PDF文档 PDF(12)
 
本次搜索耗时 0.021 秒,为您找到相关结果约 12 个.
  • 全部
  • 综合其他
  • 人工智能
  • 全部
  • 英语
  • zh
  • 日语
  • kor
  • 中文(简体)
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Google 《Prompt Engineering v7》

    and reviewing code 48 What about multimodal prompting? 54 Best Practices 54 Provide examples 54 Design with simplicity 55 Be specific about the output 56 Use Instructions over Constraints 56 Control model temperature should be set to a low number, since no creativity is needed, and we use the gemini-pro default top-K and top-P values, which effectively disable both settings (see ‘LLM Output Configuration’ 1_1_movie_classification Goal Classify movie reviews as positive, neutral or negative. Model gemini-pro Temperature 0.1 Token Limit 5 Top-K N/A Top-P 1 Prompt Classify movie reviews as POSITIVE, NEUTRAL
    0 码力 | 68 页 | 6.50 MB | 7 月前
    3
  • pdf文档 Trends Artificial Intelligence

    toward specialized chips (GPUs, TPUs, AI accelerators…), liquid cooling, and frontier data center design. In 2019, AI was a research feature; by 2023, it was a capital expenditure line item. Microsoft natives – from Atomicwork, to Epic, Fujitsu, and Gainsight, to H&R Block and LG Electronics – to design, customize, and manage their AI apps and agents. We processed over 100 trillion tokens this quarter Development’ (2024); Anthropic; Katalon; AccelQ; Monday; Quill; Mintlify; Snyk; Ansible; UX Pilot; Ark Design AI AI Developer Use Cases – 2024, per IBM Code Generation Bug Detection & Fixing Testing
    0 码力 | 340 页 | 12.14 MB | 5 月前
    3
  • pdf文档 DeepSeek-V2: A Strong, Economical, and Efficient Mixture-of-Experts Language Model

    Network (FFN). However, for both the attention module and the FFN, we design and employ innovative archi- tectures. For attention, we design MLA, which utilizes low-rank key-value joint compression to eliminate not match MHA (we provide the ablation of MHA, GQA and MQA in Appendix D.1). For DeepSeek-V2, we design an innovative attention mechanism called Multi-head Latent Attention (MLA). Equipped with low-rank affinity scores calculated for the ?-th token and all routed experts. 2.2.2. Device-Limited Routing We design a device-limited routing mechanism to bound MoE-related communication costs. When expert parallelism
    0 码力 | 52 页 | 1.23 MB | 1 年前
    3
  • pdf文档 TVM Meetup Nov. 16th - Linaro

    Target Hardware/Model Options Codegen CPU arm_cpu pixel2 (snapdragon 835), mate10/mate10pro (kirin 970), p20/p20pro (kirin 970) -target=arm64-linux-android -mattr=+neon llvm firefly rk3399, rock960, ultra96
    0 码力 | 7 页 | 1.23 MB | 6 月前
    3
  • pdf文档 清华大学 DeepSeek+DeepResearch 让科研像聊天一样简单

    告,允许开发者 自由使用、修改和分发其技术,促进了AI领域的创新和协作。 优势 挑战 测试评估:对标顶尖,能力出众  推理任务表现 • 教育类知识问答能力突出:在 MMLU、MMLU-Pro等测试中, DeepSeek R1成绩超越 OpenAI-4o等其他闭源模型。 • 数学推理能力对标顶尖模型:DeepSeek R1 在 AIME 2024 基准测试中得 分 79.8%(pass@1),略优于 向用户开 放其基础功能。o3-mini专注于数学、科学和工程等领域的复 杂推理任务,其性能和成本效益均优于之前的o1系列。 发布新一代Gemini 2.0系列模型,包括Gemini 2.0 Pro、 Gemini 2.0 Flash、Gemini 2.0 Flash-Lite和Gemini 2.0 Flash Thinking,旨在提升AI能力并提高性价比。 谷 歌  中美技术竟合
    0 码力 | 85 页 | 8.31 MB | 8 月前
    3
  • pdf文档 Deepseek R1 本地部署完全手册

    存储: 5GB 简单⽂本⽣成、基础代 码补全 7B - RAM: 8-10GB - GPU: GTX 1680(4-bit量 化) - 存储: 8GB - 内存: 16GB(M2 Pro/M3) - 存储: 8GB 中等复杂度问答、代码 调试 14B - RAM: 24GB - GPU: RTX 3090(24GB VRAM) - 存储: 20GB - 内存: 32GB(M3
    0 码力 | 7 页 | 932.77 KB | 8 月前
    3
  • pdf文档 TVM: Where Are We Going

    hardware design full stack open source Current TVM Stack VTA Runtime & JIT CompilerTSIM: Support for Future Hardware Current TVM Stack New NPU Runtime TSIM Driver TSIM Binary New Hardware Design in Verilog
    0 码力 | 31 页 | 22.64 MB | 6 月前
    3
  • pdf文档 TVM Meetup: Quantization

    2019, Amazon Web Services, Inc. or its Affiliates. All rights reserved. Outline • QNN Dialect • Design • Operators • Results on Intel Cascade Lake© 2019, Amazon Web Services, Inc. or its Affiliates extent)© 2019, Amazon Web Services, Inc. or its Affiliates. All rights reserved. QNN Dialect • Design operators that satisfy many framework operators • qnn.quantize, qnn.dequantize, qnn.requantize
    0 码力 | 19 页 | 489.50 KB | 6 月前
    3
  • pdf文档 OpenAI 《A practical guide to building agents》

    guide to 
 building agents Contents What is an agent? 4 When should you build an agent? 5 Agent design foundations 7 Guardrails 24 Conclusion 32 2 Practical guide to building agents Introduction Large Otherwise, a deterministic solution may suffice. 6 A practical guide to building agents Agent design foundations In its most fundamental form, an agent consists of three core components: 01 Model The
    0 码力 | 34 页 | 7.00 MB | 6 月前
    3
  • pdf文档 Facebook -- TVM AWS Meetup Talk

    Pursued By A Bear - 3400us (baseline), 40us (target) - 85x speedup - Uh ohEnter, TVM and model co-design - PyTorch operator overhead makes interpreter infeasible - Reduce FLOPs with block-sparsified
    0 码力 | 11 页 | 3.08 MB | 6 月前
    3
共 12 条
  • 1
  • 2
前往
页
相关搜索词
GooglePromptEngineeringv7TrendsArtificialIntelligenceDeepSeekV2StrongEconomicalandEfficientMixtureofExpertsLanguageModelTVMMeetupNov16thLinaro清华大学DeepResearch科研DeepseekR1本地部署完全手册WhereAreWeGoingQuantizationOpenAIpracticalguidetobuildingagentsFacebookAWSTalk
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩