开源中国 2023 大模型(LLM)技术报告
LLM 技术报告 大语言模型(LLM) 技术作为人工智能领域的一项重要创 新在今年引起了广泛的关注。 LLM 是利用深度学习和大数据训练的人工智能系统,专门 设计来理解、生成和回应自然语言。这些模型通过分析大量 的文本数据来学习语言的结构和用法,从而能够执行各种语 言相关任务。以 GPT 系列为代表,LLM 以其在自然语言 处理领域的卓越表现,成为推动语言理解、生成和应用的引 擎。 LLM LLM 在多个领域都取得了令人瞩目的成就。在自然语言处 理领域,GPT 系列模型在文本生成、问答系统和对话生成 等任务中展现出色的性能。在知识图谱构建、智能助手开发 等方面,LLM 技术也发挥了关键作用。此外,它还在代码 生成、文本摘要、翻译等任务中展现了强大的通用性。 本报告从技术人视角出发,将深入探讨 LLM 技术的背景、 基础设施、应用现状,以及相关的工具和平台。 2 / 32 LLM Tech Tech Map 向量数据库 数据库向量支持 大模型框架、微调 (Fine Tuning) 大模型训练平台与工具 基础设施 LLM Agent 备案上线的中国大模型 知名大模型 知名大模型应用 大模型 算力 工具和平台 LLMOps 大模型聚合平台 开发工具 AI 编程 插件、IDE、终端 代码生成工具 编程语言 3 / 320 码力 | 32 页 | 13.09 MB | 1 年前3清华大学 普通人如何抓住DeepSeek红利
• DeepSeek是一家专注通用人工智能(AGI)的中国科技公司,主攻大模型研发与应用。 • DeepSeek-R1是其开源的推理模型,擅长处理复杂任务且可免费商用。性能对齐OpenAI-o1正 式版。 • DeepSeek-R1在后训练阶段大规模使用了强化学习技术,在仅有极少标注数据的情况下,极大 提升了模型推理能力。在数学、代码、自然语言推理等任务上,性能比肩OpenAl-o1正式版。 时,最大限度维持职场 专业度。 如何使用DeepSeek攻克学习中的困难 “学习太难?DeepSeek带你‘开挂’逆袭! 场景1:课堂上突然跟不上了,怎么办 场景:数学课上,老师正在讲解“隐函数求导”,步骤写到第三行时突然跳过了中间推导,直接给出结果:“所 以这里的dy/dx=(-2x-y)/(x+3y²)”。你盯着白板上的公式一脸懵——前两步的链式法则展开去哪了?为什么分 母突然多了3y²? 场景1:课堂上突然跟不上了,怎么办 1.课堂当下(隐蔽求助) p 适用场景:课堂上随时快速跟进 p 操作技巧: Ø 在笔记软件中快速标注困惑点(如:“疑问:第二 步到第三步如何展开?”) Ø 输入精准问题: “隐函数求导例题:从方程x² + xy + y³ = 0推导 dy/dx,请展示完整的链式法则展开步骤,特别是分母 3y²的来源。” Ø 秒速获取步骤解析: 立即对照补全笔记,跟上老师进度。 2. 课间5分钟(深度追问)0 码力 | 65 页 | 4.47 MB | 8 月前3人工智能安全治理框架 1.0
2 针对人工智能应用安全风险 ………………………… 9 5. 综合治理措施 ……………………………………………… 10 6. 人工智能安全开发应用指引 ……………………………… 12 6.1 模型算法研发者安全开发指引 ……………………… 12 6.2 人工智能服务提供者安全指引 ……………………… 13 6.3 重点领域使用者安全应用指引 ……………………… 14 6.4 社会公众安全应用指引 制和方式,对确需政府监管事项及时予以响应。 1.3 技管结合、协同应对。面向人工智能研发应用全过程,综合运用技术、 管理相结合的安全治理措施,防范应对不同类型安全风险。围绕人工智能研发 应用生态链,明确模型算法研发者、服务提供者、使用者等相关主体的安全责 任,有机发挥政府监管、行业自律、社会监督等治理机制作用。 1.4 开放合作、共治共享。在全球范围推动人工智能安全治理国际合作, 共享最佳实践, 应动态调整更新,需要各方共同对治理框架持续优化完善。 2.1 安全风险方面。通过分析人工智能技术特性,以及在不同行业领域 应用场景,梳理人工智能技术本身,及其在应用过程中面临的各种安全风险 隐患。 2.2 技术应对措施方面。针对模型算法、训练数据、算力设施、产品服务、 应用场景,提出通过安全软件开发、数据质量提升、安全建设运维、测评监测 加固等技术手段提升人工智能产品及应用的安全性、公平性、可靠性、鲁棒性- 3 - 人工智能安全治理框架0 码力 | 20 页 | 3.79 MB | 1 月前3清华大学第二弹:DeepSeek赋能职场
For Culture & Art 文、图、乐、剧 Innovator For Social 智能角色交互体 Innovator For Science & Industry 行业大模型 基座大模型 人机协同 Chatbot •自然语言对话 Reasoner •基本的推理和问 题解决能力 Agent •代表用户执行任 务,具备自主行 动能力 Innovator • 参与发明和创造, • 致力于人机协同和人机共生领域的世界级团队,专注于打造能够驾驭AI、熟悉AI并实现人类与AI共生发展的学术与实践模式。 团队愿景 • 李默非(清华大学人工智能学院拟录博士生):人机共生之基座大模型研究研发 • 何静(清华博士后、北航助理教授):人机共生之快生引擎研究研发 • 尤可可(清华博士后、北石化助理教授):人机共生之AIGC短视频 • 安梦瑶(清华大学博士后):人机共生之AI诊疗研究 • 向安玲(清华博士后、中央民大助理教授):人机共生之AI数据分析领域 • 马绪峰(清华博士后、同济大学助理教授):人机共生之文化艺术创作 成员及核心研究方向 赛事 奖项 2024 “AI4S Cup LLM 挑战赛” 大模型科学文献分析赛道 一等奖 2024 Kaggl e The Learni ng Agency Lab - PII Data Detecti on 金牌 金山办公2024中文文本智能校对大赛 第二名0 码力 | 35 页 | 9.78 MB | 8 月前3DeepSeek-V2: A Strong, Economical, and Efficient Mixture-of-Experts Language Model
Model Overall Reasoning 中文推理 Language 中文语言 Avg. Math. Logi. Avg. Fund. Chi. Open. Writ. Role. Pro. 模型 总分 推理 总分 数学 计算 逻辑 推理 语言 总分 基本 任务 中文 理解 综合 问答 文本 写作 角色 扮演 专业 能力 GPT-4-1106-Preview 8.01 7.73 7.80 solving with the math dataset. arXiv preprint arXiv:2103.03874, 2021. High-flyer. Hai-llm: 高效且轻量的大模型训练工具, 2023. URL https://www.high-flyer.c n/en/blog/hai-llm. C. Hooper, S. Kim, H. Mohammadzadeh, M 题目:属于蝶骨上的结构为 A. 垂体窝 B. 棘孔 C. 破裂孔 D. 视神经管 答案是:B 题目:属于右心房的结构是 A. 肉柱 B. 室上嵴 C. 乳头肌 D. 梳状肌 答案是:D 题目:咽的分部 A. 咽隐窝 B. 口咽部 C. 鼻咽部 D. 喉咽部 答案是:C 题目:舌下神经核位于 A. 间脑 B. 延髓 C. 中脑 D. 脑挢 答案是:B 题目:从脑干背侧出脑的脑神经是 A. 副神经 B. 三叉神经0 码力 | 52 页 | 1.23 MB | 1 年前3【周鸿祎清华演讲】DeepSeek给我们带来的创业机会-360周鸿祎-202502
AI能帮助人解决登陆火星、能源自由的问题 5政企、创业者必读 大模型是真智能,是人工智能的重大拐点。你相不相信? 大模型是一场工业革命,将重塑所有产品和业务。你相不相信? 不拥抱AI的组织和个人,会被拥抱AI的组织和个人淘汰。你相不相信? 建立AI信仰 6政企、创业者必读 大模型不是泡沫,而是新一轮工业革命的驱动引擎 蒸汽革命 电气革命 信息革命 以大模型为代表的 人工智能革命 人工智能是新质生产力 能 大模型的进一步突破将引领人类社会进入智能化时代,对我们的生活方式、生产方式带来巨大变革 重塑经济图景 解决复杂问题 7政企、创业者必读 8 AI不仅是技术革新,更是思维方式和社会结构的变革 国家 产业 个人 企业政企、创业者必读 人工智能发展历程(一) 从早期基于规则的专家系统,走向基于学习训练的感知型AI 从基于小参数模型的感知型AI,走向基于大参数模型的认知型AI AI 从擅长理解的认知型AI,发展到擅长文字生成的生成式AI 从语言生成式AI,发展到可理解和生成声音、图片、视频的多模态AI 从生成式AI,发展到推理型AI 专家系统 感知AI 认知AI 生成式AI 多模态AI 推理式AI 9政企、创业者必读 人工智能发展历程(二) 从单纯对话的大模型AI,发展到具有行动和执行能力的智能体AI 从数字空间中的AI,走向能理解和操控物理空间的AI0 码力 | 76 页 | 5.02 MB | 5 月前3DeepSeek从入门到精通(20250204)
DeepSeek是什么? AI + 国产 + 免费 + 开源 + 强大 • DeepSeek是一家专注通用人工智能(AGI)的中国科技公司,主攻大模型研发与应 用。 • DeepSeek-R1是其开源的推理模型,擅长处理复杂任务且可免费商用。 Deepseek可以做什么? 直接面向用户或者支持开发者,提供智能对话、文本生成、语义理解、计算推理、代码生成补全等应用场景, 当人人都会用AI时,你如何用得更好更出彩? 推理模型 • 例如:DeepSeek-R1,GPT-o3在逻辑推理、数学推理和实时问题解决方面表现突出。 推理大模型: 推理大模型是指能够在传统的大语言模型基础上,强化推理、逻辑分析和决策能力的模型。它 们通常具备额外的技术,比如强化学习、神经符号推理、元学习等,来增强其推理和问题解决能力。 非推理大模型: 适用于大多数任务,非推理大模型一般侧重于语言生成、上下文理解和自然语言处理,而不强 解和自然语言处理,而不强 调深度推理能力。此类模型通常通过对大量文本数据的训练,掌握语言规律并能够生成合适的内容,但缺乏像 推理模型那样复杂的推理和决策能力。 维度 推理模型 通用模型 优势领域 数学推导、逻辑分析、代码生成、复杂问题拆解 文本生成、创意写作、多轮对话、开放性问答 劣势领域 发散性任务(如诗歌创作) 需要严格逻辑链的任务(如数学证明) 性能本质 专精于逻辑密度高的任务 擅长多样性高的任务0 码力 | 104 页 | 5.37 MB | 8 月前3清华大学 DeepSeek 从入门到精通
DeepSeek是什么? AI + 国产 + 免费 + 开源 + 强大 • DeepSeek是一家专注通用人工智能(AGI)的中国科技公司,主攻大模型研发与应 用。 • DeepSeek-R1是其开源的推理模型,擅长处理复杂任务且可免费商用。 Deepseek可以做什么? 直接面向用户或者支持开发者,提供智能对话、文本生成、语义理解、计算推理、代码生成补全等应用场景, 当人人都会用AI时,你如何用得更好更出彩? 推理模型 • 例如:DeepSeek-R1,GPT-o3在逻辑推理、数学推理和实时问题解决方面表现突出。 推理大模型: 推理大模型是指能够在传统的大语言模型基础上,强化推理、逻辑分析和决策能力的模型。它 们通常具备额外的技术,比如强化学习、神经符号推理、元学习等,来增强其推理和问题解决能力。 非推理大模型: 适用于大多数任务,非推理大模型一般侧重于语言生成、上下文理解和自然语言处理,而不强 解和自然语言处理,而不强 调深度推理能力。此类模型通常通过对大量文本数据的训练,掌握语言规律并能够生成合适的内容,但缺乏像 推理模型那样复杂的推理和决策能力。 维度 推理模型 通用模型 优势领域 数学推导、逻辑分析、代码生成、复杂问题拆解 文本生成、创意写作、多轮对话、开放性问答 劣势领域 发散性任务(如诗歌创作) 需要严格逻辑链的任务(如数学证明) 性能本质 专精于逻辑密度高的任务 擅长多样性高的任务0 码力 | 103 页 | 5.40 MB | 8 月前3清华大学 DeepSeek+DeepResearch 让科研像聊天一样简单
本质:以多agent实现从数据采集到可视全流程 模型特点 Claude 3.5 sonnet 平衡性能:在模型大小和 性能之间取得平衡,适合 中等规模任务。 多模态支持:支持文本和 图像处理,扩展应用场景。 可解释性:注重模型输出 的可解释性和透明性。 DeepSeek R1 高效推理:专注于低延迟和 高吞吐量,适合实时应用。 轻量化设计:模型结构优化, 资源占用少,适合边缘设备 提供高精度结果。 长文本处理:擅长处理长文本 和复杂文档,适合专业场景。 定制化能力:支持用户自定义 训练和微调,适应特定需求。 Open AI o3 mini 小型化设计:轻量级模型, 适合资源有限的环境。 快速响应:优化推理速度, 适合实时交互场景。 通用性强:适用于多种自 然语言处理任务,如对话 生成和文本理解。 爬虫数据采集 1、阅读网页源代码,提取特定网页内容; 5支持联网查询网址,Claude 3.5 sonnet暂不支持; 四个模型均能根据上传的网页代码,对多个网址链接进行筛选、去重,完全提取出符合指令要求的所有网址链接并形成列表; 在复杂爬虫任务上,DeepSeek R1与Open AI o3min生成的代码均能正常执行数据采集任务,o3响应速度更快,R1数据采集结果更加完 整准确;其他2个模型都存在多次调试但代码仍然运行不成功的问题,如代码中罗列URL不全、输出文本中提取数据为空等。0 码力 | 85 页 | 8.31 MB | 8 月前3普通人学AI指南
Contents 1 AI 大模型基础 4 1.1 AIGC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.2 AGI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.3 大模型 . . . . . . . . . . . . . . . 12 2.5.6 Snack Prompt . . . . . . . . . . . . . . . . . . . . . . . . 12 2.6 AI 大模型 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.6.1 AgentGPT . . . . . . . . . 13 2.6.4 Llama3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3 零代码本地部署 AI 后端 13 3.1 大模型 Llama3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3.1.1 步骤 1:安装 Ollama . . . . .0 码力 | 42 页 | 8.39 MB | 8 月前3
共 15 条
- 1
- 2