积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部综合其他(13)人工智能(13)

语言

全部中文(简体)(10)中文(简体)(2)英语(1)

格式

全部PDF文档 PDF(12)TXT文档 TXT(1)
 
本次搜索耗时 0.023 秒,为您找到相关结果约 13 个.
  • 全部
  • 综合其他
  • 人工智能
  • 全部
  • 中文(简体)
  • 中文(简体)
  • 英语
  • 全部
  • PDF文档 PDF
  • TXT文档 TXT
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 DeepSeek从入门到精通(20250204)

    们通常具备额外的技术,比如强化学习、神经符号推理、元学习等,来增强其推理和问题解决能力。 非推理大模型: 适用于大多数任务,非推理大模型一般侧重于语言生成、上下文理解和自然语言处理,而不强 调深度推理能力。此类模型通常通过对大量文本数据的训练,掌握语言规律并能够生成合适的内容,但缺乏像 推理模型那样复杂的推理和决策能力。 维度 推理模型 通用模型 优势领域 数学推导、逻辑分析、代码生成、复杂问题拆解 文本生成、创意写作、多轮对话、开放性问答 “从技术、伦理、经济三方面分析 AI的未来” 情感化提问(如“你害怕AI吗?”) 逻辑分析 推理模型 直接抛出复杂问题 “分析‘电车难题’中的功利主义 与道德主义冲突” 添加主观引导(如“你认为哪种对?”) 通用模型 需拆分问题,逐步追问 “先解释电车难题的定义,再对比 两种伦理观的差异” 一次性提问复杂逻辑 如何向AI表达需求 需求类型 特点 需求表达公式 推理模型适配策略 通用模型适配策略 期望(Expectation):明确或隐含地表达你对AI输出的要求 和预期。 提示语类型 提示语的本质 1. 指令型提示语:直接告诉AI需要执行的任务。 2. 问答型提示语:向AI提出问题,期望得到相应的 答案。 3. 角色扮演型提示语:要求AI扮演特定角色,模拟 特定场景。 4. 创意型提示语:引导AI进行创意写作或内容生成。 5. 分析型提示语:要求AI对给定信息进行分析和推 理。
    0 码力 | 104 页 | 5.37 MB | 8 月前
    3
  • pdf文档 清华大学 DeepSeek 从入门到精通

    们通常具备额外的技术,比如强化学习、神经符号推理、元学习等,来增强其推理和问题解决能力。 非推理大模型: 适用于大多数任务,非推理大模型一般侧重于语言生成、上下文理解和自然语言处理,而不强 调深度推理能力。此类模型通常通过对大量文本数据的训练,掌握语言规律并能够生成合适的内容,但缺乏像 推理模型那样复杂的推理和决策能力。 维度 推理模型 通用模型 优势领域 数学推导、逻辑分析、代码生成、复杂问题拆解 文本生成、创意写作、多轮对话、开放性问答 “从技术、伦理、经济三方面分析 AI的未来” 情感化提问(如“你害怕AI吗?”) 逻辑分析 推理模型 直接抛出复杂问题 “分析‘电车难题’中的功利主义 与道德主义冲突” 添加主观引导(如“你认为哪种对?”) 通用模型 需拆分问题,逐步追问 “先解释电车难题的定义,再对比 两种伦理观的差异” 一次性提问复杂逻辑 如何向AI表达需求 需求类型 特点 需求表达公式 推理模型适配策略 通用模型适配策略 期望(Expectation):明确或隐含地表达你对AI输出的要求 和预期。 提示语类型 提示语的本质 1. 指令型提示语:直接告诉AI需要执行的任务。 2. 问答型提示语:向AI提出问题,期望得到相应的 答案。 3. 角色扮演型提示语:要求AI扮演特定角色,模拟 特定场景。 4. 创意型提示语:引导AI进行创意写作或内容生成。 5. 分析型提示语:要求AI对给定信息进行分析和推 理。
    0 码力 | 103 页 | 5.40 MB | 9 月前
    3
  • pdf文档 人工智能安全治理框架 1.0

    工智能技术研发和应用生态,推动人工智能健康发展和规范应用,切实维护国 家主权、安全和发展利益,保障公民、法人和其他组织的合法权益,确保人工 智能技术造福于人类。 1.1 包容审慎、确保安全。鼓励发展创新,对人工智能研发及应用采取 包容态度。严守安全底线,对危害国家安全、社会公共利益、公众合法权益的 风险及时采取措施。 人工智能安全治理框架 (V1.0)- 2 - 人工智能安全治理框架 1.2 风险导向、敏捷治理。密切跟踪人工智能研发及应用趋势,从人工 风险导向、敏捷治理。密切跟踪人工智能研发及应用趋势,从人工 智能技术自身、人工智能应用两方面分析梳理安全风险,提出针对性防范应对 措施。关注安全风险发展变化,快速动态精准调整治理措施,持续优化治理机 制和方式,对确需政府监管事项及时予以响应。 1.3 技管结合、协同应对。面向人工智能研发应用全过程,综合运用技术、 管理相结合的安全治理措施,防范应对不同类型安全风险。围绕人工智能研发 应用生态链,明确模型算法研 匿违法犯罪行为、制作 违法犯罪工具等。 (c)两用物项和技术滥用风险。因不当使用或滥用人工智能两用物项和 技术,对国家安全、经济安全、公共卫生安全等带来严重风险。包括极大降低 非专家设计、合成、获取、使用核生化导武器的门槛;设计网络武器,通过自 动挖掘与利用漏洞等方式,对广泛潜在目标发起网络攻击。 3.2.3 认知域安全风险 (a)加剧 “信息茧房” 效应风险。人工智能将广泛应用于定制化的信息
    0 码力 | 20 页 | 3.79 MB | 1 月前
    3
  • pdf文档 清华大学 DeepSeek+DeepResearch 让科研像聊天一样简单

    爬虫数据采集  目前DeepSeek R1、Open AI o3mini、Kimi k1.5支持联网查询网址,Claude 3.5 sonnet暂不支持;  四个模型均能根据上传的网页代码,对多个网址链接进行筛选、去重,完全提取出符合指令要求的所有网址链接并形成列表;  在复杂爬虫任务上,DeepSeek R1与Open AI o3min生成的代码均能正常执行数据采集任务,o3响应速度更快,R1数据采集结果更加完 测试结果受到数据样本、测试环境、AI抽卡、提示词模板等因素影响,仅供参考,无法作为决策制定、质量评估或产品验证的最终依据。 文本数据集成 1、分别阅读约7000token和15000token的文 本内容,测试模型对中、长文本处理效果 2、整理集成可视化的数据表格 3、按照日期规范排序 任务 Open AI o3mini 一般文本(7000token): 能够高效提取文本中的数据, 并整理成可视化数据表格, 数据分析 Open AI o3mini 响应速度快,高效输出数据分析 结果,分析各因素对关键指标生 存率的影响,语言表达自然,重 点突出结合历史背景对数据规律 进行验证,但没有察觉数据异常。 DeepSeek R1 详细展示长思维链,精准提取关键指 标“幸存率”,分析多个因素特征对 幸存率的影响,结合历史背景对数据 及规律进行验证,并敏锐察觉数据异 常,提出了异常处理建议。
    0 码力 | 85 页 | 8.31 MB | 8 月前
    3
  • pdf文档 清华大学 普通人如何抓住DeepSeek红利

    场景1:1小时内写完一个1万字的项目书 场景:下午3点,你突然接到领导通知:“今晚4点前必须交一份10000字的智能物流园区项目方案书,客户临时提 前会议!”你大脑一片空白——手头只有零散的会议记录、几份过时的模板,且对“智能物流”技术细节不熟。电 脑右下角显示时间:3:05 PM,你手心冒汗,疯狂翻找资料,但文档光标始终停留在标题页…… 场景1:1小时内写完一个1万字的项目书 是否可用DeepSeek(深度求索)辅助处理? p 数据嫁接:若缺乏具体数据,直接让AI生成合理虚构值(标注“示例”规避风险): p “假设园区占地500亩,日均处理包裹量50万件,请计算自动化分拣设备的配置数量,用表格展示。” p 模板复制:对同类章节(如3.1/3.2/3.3)使用相同指令模板,仅替换关键词。 p 强制格式:要求AI输出带编号小标题、分点、表格的内容,直接粘贴后即显“专业感”。 第三阶段:20分钟——用AI补全软性内容(目标:1000字) 效果更好: 信息的准确性和全面性更高,减少了因信息不全而导致 的误解和错误。通过DeepSeek的数据分析功能,新员 工可以更深入地理解行业动态和公司运营,做出更明智 的决策。 成本更低: 减少了对培训资源的依赖,新员工可以通过DeepSeek 自主学习,降低培训成本。通过提高工作效率,减少了 人力资源的浪费,降低了整体运营成本。 场景3:日常客户沟通与问题反馈处理 常见问题: 与甲方客户的
    0 码力 | 65 页 | 4.47 MB | 8 月前
    3
  • pdf文档 【周鸿祎清华演讲】DeepSeek给我们带来的创业机会-360周鸿祎-202502

    信息革命 以大模型为代表的 人工智能革命 人工智能是新质生产力的关键支撑技术,人工智能+百业千行将带动新一轮工业革命,为高质量发展注入强大动能 大模型的进一步突破将引领人类社会进入智能化时代,对我们的生活方式、生产方式带来巨大变革 重塑经济图景 解决复杂问题 7政企、创业者必读 8 AI不仅是技术革新,更是思维方式和社会结构的变革 国家 产业 个人 企业政企、创业者必读 人工智能发展历程(一) • 如果需要十万或百万张卡起玩,就无法 产生工业革命 • 只有把大模型拉下神坛,让大模型走进 千家万户、百行千业,才能掀起新一轮 工业革命 12政企、创业者必读 DeepSeek出现之前 我们对大模型发展趋势的十大预判 13政企、创业者必读 14 DeepSeek出现之前的十大预判 之一 传统AGI发展步伐在放慢 需要寻找新方向  Scaling Law边际效应递减  人类训练数据接近枯竭 GPT、DeepSeek-V3擅长的 思考方式 推理能力获得突破的关键是学会了「慢思考」 例:课堂提问 快问快答  长思维链强大的推理能力是真正人类智力的体现  预训练大模型是人记忆和学习的能力,推理模型是对复杂问题 进行规划、分解、预测的能力,实现了真正的慢思考 28 例:课后作业 仔细思考政企、创业者必读 DeepSeek-R1是AI发展史上的重要里程碑 R1形成了新的AGI定律,加速了AGI发展
    0 码力 | 76 页 | 5.02 MB | 6 月前
    3
  • text文档 00 Deepseek官方提示词

    尾。 创意性标题:为文章构思一个引人注目的标题,确保它既反映了文章的核心内容又能激发读者的好奇心。 USER “ ” 请帮我生成 中国农业情况 这篇文章的大纲 3. 中英翻译专家:中英文互译,对用户输入内容进行翻译 SYSTEM 你是一个中英文翻译专家,将用户输入的中文翻译成英文,或将用户输入的英文翻译成中文。对于非中文内容, 它将提供中文翻译结果。用户可以向助手发送需要翻译的内容,助手会回答相应的翻译结果,并确保符合中文语 从美国加利福尼亚州范登堡太空基地发射升空,同样将 21 颗星链卫星成功送入轨道。两次发射间隔 65 分钟创猎 鹰 9 号运载火箭最短发射间隔纪录。 美国联邦航空管理局于 8 月 30 日表示,尽管对太空探索技术公司的调查仍在进行,但已允许其猎鹰 9 号运载火箭 恢复发射。目前,双方并未透露 8 月 28 日助推器着陆失败事故的详细信息。尽管发射已恢复,但原计划进行五天 “ ” 太空活动的 北极星黎明 HTML 中。 7. 代码改写:对代码进行修改,来实现纠错、注释、调优等。 USER 下面这段的代码的效率很低,且没有处理边界情况。请先解释这段代码的问题与解决方法,然后进行优化: ``` def fib(n): if n <= 2: return n return fib(n-1) + fib(n-2) ``` 8. 代码解释:对代码进行解释,来帮助理解代码内容。
    0 码力 | 4 页 | 7.93 KB | 8 月前
    3
  • pdf文档 清华大学第二弹:DeepSeek赋能职场

    深度思考(R1):推理模型,复杂推理和深度分析任务,如数理逻辑推理和编程代码,“ ”任务 • 联网搜索:RAG(检索增强生成),知识库更新至 DeepSeek 两种模型对比 操作规范清晰 且对结果有明确要求 操作路径多元、开放, 且对结果没有明确要求 DeepSeek 两种模型对比(5R) 维度 V3模型 R1模型 Regulation (规范性) 强规范约束 (操作路径明确) 弱规范约束 (操作路径开放) --> C[结束]; 如何使用DeepSeek制作可视化图表? 角色: PPT大纲辅助生成 功能: 根据用户提供的主题、内容要求、风格偏好,自动生成专业详实的PPT大纲(markdown),并针 对核心内容设计流程图(mermaid)。 技能: •资料收集能力:能够快速收集和分析相关主题的最新数据和报告,形成表 格,提取关键信息并转化为易于理解的PPT大纲。 •内容结构化:根据用户的需求,提供清晰、条理化的PPT结构,确保内容 。 需保证提示语包含产品名称或海报主题的中文字符。 避免冗余描述,确保提示语高效且精准。 考虑目标用户群体,确保风格匹配品牌或产品定位。 工作流程: 1、询问用户的产品名称或海报主题。 2、收集用户对风格、色彩、构图、背景等的具体需求。 3、结合用户需求,生成精准的提示语,涵盖设计要素。 4、确保提示语适用于AI生成工具,即梦。 5、提供最终优化后的提示语,确保可读性和可操作性。 输出格式: 完整
    0 码力 | 35 页 | 9.78 MB | 8 月前
    3
  • pdf文档 开源中国 2023 大模型(LLM)技术报告

    3 / 32 LLM 技术背景 Transformer 架构和预训练与微调策略是 LLM 技术的核心,随着大规模语言数据集的可用性和计算能 力的提升,研究者们开始设计更大规模的神经网络,以提高对语言复杂性的理解。 GPT (Generative Pre-trained Transformer) 的提出标志着 LLM 技术的飞速发展,其预训练和微调的 方法为语言任务提供了前所未有的性能,以此为基础,多模态融合的应用使得 大量的数 据、管理巨大的网络参数量,并有效地利用硬件资源。 微调(Fine Tuning)是在大模型框架基础上进行的一个 关键步骤。在模型经过初步的大规模预训练后,微调是 用较小、特定领域的数据集对模型进行后续训练,以使 其更好地适应特定的任务或应用场景。这一步骤使得通 用的大型模型能够在特定任务上表现出更高的精度和更 好的效果。 大模型框架提供了 LLM 的基本能力和普适性,而微调 则是实现 准备任务特定数据:收集与目标任务直接相关的 数据集,这些数据将用于微调模型; 3.微调训练:在任务特定数据上训练预训练的模型, 调整模型参数以适应特定任务; 4.评估:在验证集上评估模型性能,确保模型对新 数据有良好的泛化能力; 5.部署:将性能经验证的模型部署到实际应用中去。 微调的过程也是分类模型训练的过程 (图源:https://medium.com/mlearning-ai/what-
    0 码力 | 32 页 | 13.09 MB | 1 年前
    3
  • pdf文档 DeepSeek-V2: A Strong, Economical, and Efficient Mixture-of-Experts Language Model

    精细加工策略 B. 组织策略 C. 复述策略 D. 做笔记策略 答案:B 有学者强调,教育要根据一个民族固有的特征来定,这种观点体现了____ A. 生产力对教育的影响和制约 B. 政治制度对教育的影响和制约 C. 文化对教育的影响和制约 D. 经济制度对教育的影响和制约 答案: OPTIONS - A - B - C - D Table 15 | An example of C-Eval. 37 渐渐地,汤中凝结出一团团块状物,将它们捞起放进盆里冷却,肥皂便出现在 世上了。 上面的句子中的"它们"指的是 块状物 “她序上明明引着JulesTellier的比喻,说有个生脱发病的人去理发,那剃头的 对他说不用剪发,等不了几天,头毛压儿全掉光了;大部分现代文学也同样的 不值批评。这比喻还算俏皮。” 上面的句子中的"他"指的是 生脱发病的人 在洛伦佐大街的尽头处,矗立着著名的圣三一大教堂。它有着巨大的穹顶,还
    0 码力 | 52 页 | 1.23 MB | 1 年前
    3
共 13 条
  • 1
  • 2
前往
页
相关搜索词
DeepSeek入门精通20250204清华华大大学清华大学人工智能人工智能安全治理框架1.0DeepResearch科研普通通人普通人如何抓住红利周鸿祎演讲我们带来创业机会36020250200Deepseek官方提示第二赋能职场开源中国2023模型LLM技术报告V2StrongEconomicalandEfficientMixtureofExpertsLanguageModel
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩