清华大学 DeepSeek+DeepResearch 让科研像聊天一样简单AI o3mini 暂不支持附件上传,响应速度 快,能够快速读取粘贴数据, 输出结果格式工整、简洁。 DeepSeek R1 能够详细全面地提取文件中的 数据,并整理成可视化数据表 格,逻辑性强、指标清晰。 所上传的“2025春运数据(1月14-2月8日).txt”包含了从2025年1月14日至2025年2月8日每天各种交通方式的春运客运 量信息,请从中读取每一天的信息,并整理成一张表格,要求包括以下几项信息:1 很好地完成了数据读取及提取 任务,没有漏数据指标,数据 逻辑性很好 Kimi k1.5 能够快速读取文件数据,并 整理成可视化数据表格,但 填入数据有所缺失。 DeepSeek R1与Claude 3.5 sonnet均能很好的完成文件数据读取任务,生成的表格逻辑性强、数据指标清晰,Claude 3.5 sonnet一 次性完成表格生成后支持直接复制和表格文件下载。 Open AI o3 DeepSeek R1与Open AI o3mini的数据分析能力相当,且领先其他两个模型,均能够精准抓取数据核心指标并做统计,找到各特征与核心 指标的关联,其中R1分析逻辑更加清晰严谨,而o3推理更加高效; Kimi k1.5推理逻辑清晰但分析能力相对较弱, Claude 3.5 sonnet能够提供分析思路但没有明确结论。 结论 测试结果受到数据样本、测试环境、AI抽卡、提示词模板等因素影0 码力 | 85 页 | 8.31 MB | 8 月前3
清华大学 普通人如何抓住DeepSeek红利在AI时代,知识的获取成本趋近于零,拥有知识不再是核心竞争力。利用提示词创造知识,引领创新、明确 方向,成为社会与个人竞争力的关键。 p 选择中的再创造 面对AI提供的多种解法,人类需具备批判性思维与逻辑判断能力,通过选择最优答案,实现解决方案的创新 性再生。 p 智慧赋能的决策力 提出问题与甄别答案的能力,使人类在信息爆炸与AI辅助的时代,通过决策行为实现价值创造,成为社会发 展的持续动力。 故事创作 通用问答 专业领域问答 因果推理 知识推理 问答系统 逻辑推理 自然语言处理 文本生成与创作 建议生成 风险评估 辅助决策 概念关联 知识整合 交互能力 情感分析 文本分类 图像理解 跨模态转换 专业建议 任务分解 情感回应 上下文理解 对话能力 多轮对话 数学运算 逻辑分析 能力图谱 诗歌创作 语音识别 指令理解 方案规划 实体识别 文本生成 03 02 01 语义分析 • 语义解析 • 情感分析(评论、反馈) • 意图识别(客服对话、用户查 询) • 实体提取(人名、地点、事件) 知识推理 • 知识推理 • 逻辑问题解答(数学、常识 推 理 ) • 因果分析(事件关联性) 自然语言理解与分析 文本分类 • 文本分类 • 主题标签生成(如新闻分 类) • 垃圾内容检测 Mermaid图表 ·0 码力 | 65 页 | 4.47 MB | 8 月前3
DeepSeek从入门到精通(20250204)剧本或对话设计 文本创作 长文本摘要(论文、报告) 文本简化(降低复杂度) 多语言翻译与本地化 摘要与改写 02 01 03 文本生成 自然语言理解与分析 知识推理 知识推理 逻辑问题解答(数学、常识推 理) 因果分析(事件关联性) 语义分析 语义解析 情感分析(评论、反馈) 意图识别(客服对话、用户查询) 实体提取(人名、地点、事件) 文本分类 文本分类 com 如何从入门到精通? 当人人都会用AI时,你如何用得更好更出彩? 推理模型 • 例如:DeepSeek-R1,GPT-o3在逻辑推理、数学推理和实时问题解决方面表现突出。 推理大模型: 推理大模型是指能够在传统的大语言模型基础上,强化推理、逻辑分析和决策能力的模型。它 们通常具备额外的技术,比如强化学习、神经符号推理、元学习等,来增强其推理和问题解决能力。 非推理大模型: 适用 生成合适的内容,但缺乏像 推理模型那样复杂的推理和决策能力。 维度 推理模型 通用模型 优势领域 数学推导、逻辑分析、代码生成、复杂问题拆解 文本生成、创意写作、多轮对话、开放性问答 劣势领域 发散性任务(如诗歌创作) 需要严格逻辑链的任务(如数学证明) 性能本质 专精于逻辑密度高的任务 擅长多样性高的任务 强弱判断 并非全面更强,仅在其训练目标领域显著优于通用模型 通用场景更灵活,但专项任务需依赖提示语补偿能力0 码力 | 104 页 | 5.37 MB | 8 月前3
清华大学 DeepSeek 从入门到精通剧本或对话设计 文本创作 长文本摘要(论文、报告) 文本简化(降低复杂度) 多语言翻译与本地化 摘要与改写 02 01 03 文本生成 自然语言理解与分析 知识推理 知识推理 逻辑问题解答(数学、常识推 理) 因果分析(事件关联性) 语义分析 语义解析 情感分析(评论、反馈) 意图识别(客服对话、用户查询) 实体提取(人名、地点、事件) 文本分类 文本分类 APP:DeepSeek 如何从入门到精通? 当人人都会用AI时,你如何用得更好更出彩? 推理模型 • 例如:DeepSeek-R1,GPT-o3在逻辑推理、数学推理和实时问题解决方面表现突出。 推理大模型: 推理大模型是指能够在传统的大语言模型基础上,强化推理、逻辑分析和决策能力的模型。它 们通常具备额外的技术,比如强化学习、神经符号推理、元学习等,来增强其推理和问题解决能力。 非推理大模型: 适用 生成合适的内容,但缺乏像 推理模型那样复杂的推理和决策能力。 维度 推理模型 通用模型 优势领域 数学推导、逻辑分析、代码生成、复杂问题拆解 文本生成、创意写作、多轮对话、开放性问答 劣势领域 发散性任务(如诗歌创作) 需要严格逻辑链的任务(如数学证明) 性能本质 专精于逻辑密度高的任务 擅长多样性高的任务 强弱判断 并非全面更强,仅在其训练目标领域显著优于通用模型 通用场景更灵活,但专项任务需依赖提示语补偿能力0 码力 | 103 页 | 5.40 MB | 8 月前3
人工智能安全治理框架 1.0权访问、恶意攻击、诱导交互等问题,可能导致数据和个人信息泄露。 3.1.3 系统安全风险 (a)缺陷、后门被攻击利用风险。人工智能算法模型设计、训练和验证 的标准接口、特性库和工具包,以及开发界面和执行平台可能存在逻辑缺陷、- 5 - 人工智能安全治理框架 漏洞等脆弱点,还可能被恶意植入后门,存在被触发和攻击利用的风险。 (b)算力安全风险。人工智能训练运行所依赖的算力基础设施,涉及多源、 泛在算力节点, 生产关系的大幅改变,加速重构传统行业模式,颠覆传统的就业观、生育观、 教育观,对传统社会秩序的稳定运行带来挑战。 (c)未来脱离控制的风险。随着人工智能技术的快速发展,不排除人工 智能自主获取外部资源、自我复制,产生自我意识,寻求外部权力,带来谋求 与人类争夺控制权的风险。 4. 技术应对措施 针对上述安全风险,模型算法研发者、服务提供者、系统使用者等需从 训练数据、算力设施、模型算法、产品服务、应用场景各方面采取技术措施予 予 以防范。 4.1 针对人工智能内生安全风险 4.1.1 模型算法安全风险应对 (a)不断提高人工智能可解释性、可预测性,为人工智能系统内部构造、- 8 - 人工智能安全治理框架 推理逻辑、技术接口、输出结果提供明确说明,正确反映人工智能系统产生结 果的过程。 (b)在设计、研发、部署、维护过程中建立并实施安全开发规范,尽可 能消除模型算法存在的安全缺陷、歧视性倾向,提高鲁棒性。0 码力 | 20 页 | 3.79 MB | 1 月前3
普通人学AI指南输入框中填入/var/lib/postgresql/data,下图 35中 5 处,这是固定不变的,直接复制过去! 31 Figure 35: 配置 MaxKB 续 最后点击 Run 按钮,这样一个 MaxKB 容器就搭建完毕了! 5.4 打开 MaxKB 网页 浏览器打开下面链接,复制到浏览器中,看到 MaxKB 应用界面,如图 36所示: http://127.0.0.1:8080 320 码力 | 42 页 | 8.39 MB | 8 月前3
00 Deepseek官方提示词主题分析能力,能准确提取关键信息和核心要点。具备丰富的文案写作知识储备,熟悉各种文体和题材的文案大 纲构建方法。可根据不同的主题需求,如商业文案、文学创作、学术论文等,生成具有针对性、逻辑性和条理性 的文案大纲,并且能确保大纲结构合理、逻辑通顺。该大纲应该包含以下部分: 引言:介绍主题背景,阐述撰写目的,并吸引读者兴趣。 主体部分:第一段落:详细说明第一个关键点或论据,支持观点并引用相关数据或案例。 第二段落 2: return n return fib(n-1) + fib(n-2) ``` 8. 代码解释:对代码进行解释,来帮助理解代码内容。 USER 请解释下面这段代码的逻辑,并说明完成了什么功能: ``` // weight 数组的大小 就是物品个数 for(int i = 1; i < weight.size(); i++) { // 遍历物品 for(int0 码力 | 4 页 | 7.93 KB | 8 月前3
清华大学第二弹:DeepSeek赋能职场…… DeepSeek 三种模式对比 • 基础模型(V3):通用模型(2024.12),高效便捷,适用于绝大多数任务,“ ”任务 • 深度思考(R1):推理模型,复杂推理和深度分析任务,如数理逻辑推理和编程代码,“ ”任务 • 联网搜索:RAG(检索增强生成),知识库更新至 DeepSeek 两种模型对比 操作规范清晰 且对结果有明确要求 操作路径多元、开放, 且对结果没有明确要求 •内容结构化:根据用户的需求,提供清晰、条理化的PPT结构,确保内容 流畅且富有逻辑。 •领域特定知识:掌握不同领域的特有知识,包括行业术语、法规、技术发 展等,能够灵活应对各种行业需求,熟练使用麦肯锡分析方法提供专业、深刻的洞察。 约束: •所有生成内容必须通俗易懂且有深度,突显专业性,尽量规避AI生成痕迹; •在提供PPT大纲时,确保内容的完整性和逻辑性,避免缺少关键信息,不 少于30页内容,内容一定要完整。0 码力 | 35 页 | 9.78 MB | 8 月前3
【周鸿祎清华演讲】DeepSeek给我们带来的创业机会-360周鸿祎-202502传统AGI发展步伐在放慢 需要寻找新方向 Scaling Law边际效应递减 人类训练数据接近枯竭 合成数据无法创造新知识 推理能力难以泛化,成本高昂 全面超越人类的人工智能在逻辑上不成立政企、创业者必读 15 DeepSeek出现之前的十大预判 之二 慢思考成为新的发展模式 大模型发展范式正在从「预训练」转向「后训练」和「推理时计算」 大模型厂商都在探索慢思考、思维链技术政企、创业者必读 预训练模型如GPT——疯狂读书,积 累知识,Scaling law撞墙 预训练模型思考深度不够 算力见顶,变成少数巨头游戏 预训练大模型 推理大模型 预训练大模型难以通往AGI之路 推理模型如R1——通过逻辑链条推导答案, 分解规划,自我反思 预训练范式像是记忆和模仿,强化学习范 式更像探索实践 记住很多东西只是基础,真正有价值的是 融会贯通 R1找到了人类通往AGI的方向 DeepSeek颠覆式创新——技术创新 AI安全:实现安全的「自动驾驶」 46政企、创业者必读 大模型的六大能力 47 基本 能力 业务 能力 创新 能力 赋能 未来产业 创意 能力 赋能企业 数转智改 数学计算 语义理解 逻辑推理 语言翻译 文本创作 自动驾驶 具身智能 1 2 4 5 知识问答 代码编程 文本生成 多轮对话 图像生成 视频生成 音频生成 A I 数字人 生物制药 新材料研究 脑机接口0 码力 | 76 页 | 5.02 MB | 6 月前3
DeepSeek-V2: A Strong, Economical, and Efficient
Mixture-of-Experts Language ModelReasoning 中文推理 Language 中文语言 Avg. Math. Logi. Avg. Fund. Chi. Open. Writ. Role. Pro. 模型 总分 推理 总分 数学 计算 逻辑 推理 语言 总分 基本 任务 中文 理解 综合 问答 文本 写作 角色 扮演 专业 能力 GPT-4-1106-Preview 8.01 7.73 7.80 7.66 8.29 7.99 7 下列关于大学生的情绪与理智关系的说法中正确的是____。 A. 能冷静控制自己情绪 B. 感情用事,难以用理智控制情绪 C. 遇事能坚持自己正确认识 D. 已发展到不为小事而发怒和怄气 答案:B 在学完一篇逻辑结构严密的课文以后,勾画出课文的论点论据的逻辑关系图以 帮助理解和记忆。这种学习方法属于____。 A. 精细加工策略 B. 组织策略 C. 复述策略 D. 做笔记策略 答案:B 有学者强调,教育要根据一个民族固有的特征来定,这种观点体现了____0 码力 | 52 页 | 1.23 MB | 1 年前3
共 13 条
- 1
- 2













