DeepSeek从入门到精通(20250204)概率预测(快速反应模型,如ChatGPT 4o) 链式推理(慢速思考模型,如OpenAI o1) 性能表现 响应速度快,算力成本低 慢速思考,算力成本高 运算原理 基于概率预测,通过大量数据训练来快速预测可能 的答案 基于链式思维(Chain-of-Thought),逐步推理 问题的每个步骤来得到答案 决策能力 依赖预设算法和规则进行决策 能够自主分析情况,实时做出决策 创造力 限于模式识别和优化,缺乏真正的创新能力 涌现属性:某些元素组合可能产生单个元素所不具备的新特性。 目标 主要元素组合 次要元素组合 组合效果 提高输出准确性 主题元素 + 数据元素 + 质量控制 元素 知识域元素 + 输出验证元 素 确保AI基于准确的主题和数据生成内容,并通过严格的质量控制和验证提高准 确性 增强创造性思维 主题元素 + 背景元素 + 约束条件 元素 参考元素 + 迭代指令元素 通过提供丰富的背景信息和适度的约束,激发AI的创造性思维,同时通过多轮 提供背景信息和任务概述 任务分解的提示语链设计步骤 任务分解的概念源于问题解决理论和系统工程学。将任务分解应用于提示语设计,实际上是在模拟人类处理 复杂问题的方式。这种方法主要基于分而治之原则、层级结构理论以及认知负荷理论作为其理论基础。 设计基于任务分解的提示语链涉及以下步骤: 明确总体 目标 识别主要 任务 细化子任 务 定义微任 务 设计对应 提示语 建立任务 间联系 加入反馈 调整机制0 码力 | 104 页 | 5.37 MB | 8 月前3
清华大学 DeepSeek 从入门到精通概率预测(快速反应模型,如ChatGPT 4o) 链式推理(慢速思考模型,如OpenAI o1) 性能表现 响应速度快,算力成本低 慢速思考,算力成本高 运算原理 基于概率预测,通过大量数据训练来快速预测可能 的答案 基于链式思维(Chain-of-Thought),逐步推理 问题的每个步骤来得到答案 决策能力 依赖预设算法和规则进行决策 能够自主分析情况,实时做出决策 创造力 限于模式识别和优化,缺乏真正的创新能力 涌现属性:某些元素组合可能产生单个元素所不具备的新特性。 目标 主要元素组合 次要元素组合 组合效果 提高输出准确性 主题元素 + 数据元素 + 质量控制 元素 知识域元素 + 输出验证元 素 确保AI基于准确的主题和数据生成内容,并通过严格的质量控制和验证提高准 确性 增强创造性思维 主题元素 + 背景元素 + 约束条件 元素 参考元素 + 迭代指令元素 通过提供丰富的背景信息和适度的约束,激发AI的创造性思维,同时通过多轮 提供背景信息和任务概述 任务分解的提示语链设计步骤 任务分解的概念源于问题解决理论和系统工程学。将任务分解应用于提示语设计,实际上是在模拟人类处理 复杂问题的方式。这种方法主要基于分而治之原则、层级结构理论以及认知负荷理论作为其理论基础。 设计基于任务分解的提示语链涉及以下步骤: 明确总体 目标 识别主要 任务 细化子任 务 定义微任 务 设计对应 提示语 建立任务 间联系 加入反馈 调整机制0 码力 | 103 页 | 5.40 MB | 8 月前3
清华大学 DeepSeek+DeepResearch 让科研像聊天一样简单你需要完成以下两个任务: 1.阅读网页【网址】源代码【对应网页源代码】。提取所 有包含“春运2025丨X月X日,全社会跨区域人员流动量完 成X万人次”的网址进行去重、筛选,合并成网址列表 2.撰写python脚本,基于步骤1输出的网址列表提取所有网 址内容“截至目前 2025 年春运(2025年1月14日到2月8日) 相关数据(如日期、全社会跨区域人员流动量、铁路客运 量、公路人员流动量、水路客运量、民航客运量等)”完 2、对数据集进行深入分析和数据挖掘 任务 DeepSeek R1 能够准确对数据进行分类,从多个维度进行梳理和分析,借助可视化图表进行数据挖掘,基于分析结 果提供可行建议,但整体数据挖掘深度较浅,缺少对不同类型数据直接关联性的探究。 第一轮对话: 第二轮对话: (基于初步分析结果,选择其中一部分或某个方 向进行深入的数据挖掘) 提示词 测试结果受到数据样本、测试环境、AI抽卡、提示词模板等因素 影响,仅供参考,无法作为决策制定、质量评估或产品验证的最终依据。 数据挖掘 Claude 3.5 sonnet 基于数据集,在整体数据概括后提供多个 深入数据挖掘方向,根据需求输入研究倾 向,高效生成多个维度的数据分析,语言 简洁,挖掘深度较浅。 Kimi k1.5 提供数据的潜在用途方向,深入分 析过程中,从多个维度(如时间、 语言、地区)深入挖掘数据意义和 关联性,进一步总结趋势结论并提0 码力 | 85 页 | 8.31 MB | 8 月前3
DeepSeek图解10页PDFrun deepseek-r1:1.5b,很快就能进入对话界面,如 下图4所示: 图 4: Ollama 软件启动 deepseek-r1 界面 1.3 DeepSeek 本地运行使用演示 基于上面步骤搭建完成后,接下来提问 DeepSeek 一个问题:请帮我分析 Python 编程如何从零开始学习?,下面是它的回答,首先会有一个 think 标签,这里面嵌入的是它的思考过程,不是正式的回复: rge Language Model, LLM))的兴起。LLM 在自然语言处理(NLP)领域 发挥着越来越重要的作用,广泛应用于智能问答、文本生成、代码编写、机 器翻译等任务。LLM 是一种基于深度学习的人工智能模型,其核心目标是 通过预测下一个单词来理解和生成自然语言。训练 LLM 需要大量的文本数 据,使其能够掌握复杂的语言模式并应用于不同任务。 接下来,咱们先从较为基础的概念开始。 代表什么?b 是英文的 billion,意思是十亿,7b 就是 70 亿,8b 就 是 80 亿,70 亿、80 亿是指大模型的神经元参数(权重参数 weight+bias)的 总量。目前大模型都是基于 Transformer 架构,并且是很多层的 Transformer 结构,最后还有全连接层等,所有参数加起来 70 亿,80 亿,还有的上千亿。 教程作者:郭震,工作 8 年目前美国 AI 博士在读,公众号:郭震0 码力 | 11 页 | 2.64 MB | 8 月前3
【周鸿祎清华演讲】DeepSeek给我们带来的创业机会-360周鸿祎-2025027政企、创业者必读 8 AI不仅是技术革新,更是思维方式和社会结构的变革 国家 产业 个人 企业政企、创业者必读 人工智能发展历程(一) 从早期基于规则的专家系统,走向基于学习训练的感知型AI 从基于小参数模型的感知型AI,走向基于大参数模型的认知型AI 从擅长理解的认知型AI,发展到擅长文字生成的生成式AI 从语言生成式AI,发展到可理解和生成声音、图片、视频的多模态AI 每个企业都可以直接使用DeepSeek,因为开源透明可信任,企业和 政府可做大量私有化部署 一个开源产品获得突破之后,全世界都能分享成果,结束中国百模大 战,节省大量成本 很多公司参与开源,帮助改进产品,很多人基于DS生态开发应用产 品,增加影响力,人人为我,我为人人 技术开放,对人工智能行业形成蓬勃发展,寒武纪大爆炸,推动AGI 行业发展 DeepSeek颠覆式创新——开源 34政企、创业者必读 备上,解决物理现实世界的认知、决策和行动问题政企、创业者必读 赋予自动驾驶复杂物理世界理解能力 从规则驱动到学习驱动 43政企、创业者必读 人工智能的目标是星辰大海,是为了让人类在科技上有突破 基于DeepSeek的强推理模型,利用科学领域专业知识进行强化学习, 能够打造更加专业的科学推理模型 DeepSeek六大应用方向之五 科学研究:打造科研新范式 44政企、创业者必读 AI For0 码力 | 76 页 | 5.02 MB | 6 月前3
清华大学 普通人如何抓住DeepSeek红利加载数据集:使用datasets库加载SQuAD数据集,这个数据 集包含了大量基于2020年之前数据生成的问答对。 提取问题:从数据集中提取问题,并使用set去重。 检查问题数量:确保提取的问题数量至少为10万个。 保存问题:将问题保存到CSV文件生成的真实答案问题.csv中。 要生成10万个存在真实答案的问题,并且基于2020年之前的 数据,可以使用现有的公开问答数据集(如SQuAD 、 Natural e t s 库 (Hugging Face的datasets库)来加载SQuAD数据集 (Stanford Question Answering Dataset),这个数据集 是一个著名的问答数据集,基于维基百科数据生成,并且数 据是2020年之前的。 AI幻觉问题抽取:多数据集 问题加载 探讨大语言模型(LLMs)在模拟人类意见动态和社 会现象(如极化和错误信息传播)中的表现,特别 是引入偏误信息后的意见动态变化。使用大模型模 p 为了观测偏误信息加入后50个代理意 见动态的具体呈现,研究通过依存关系 构造三个科学共识的语义图谱,并和无 偏误状态进行对比。对每个科学共识议 题,选择图中最有代表性的40个实体 (基于节点的度)。 p 在自然语言处理中,依存关系是用于描 述句子中词与词之间的关系,帮助揭示 句子的句法结构。包括nsubj(名词性 主语)、 dobj(直接宾语、pobj(介 词宾语)、attr(属性)、ROOT(根0 码力 | 65 页 | 4.47 MB | 8 月前3
开源中国 2023 大模型(LLM)技术报告提供高效的存储和检索能力。通过数据向量化,实现了 在向量数据库中进行高效的相似性计算和查询。 根据向量数据库的的实现方式,可以将向量数据库大致分为两类: 原生的向量数据库专门为存储和检索向量而设计, 所管理的数据是基于对象或数据点的向量表示进行 组织和索引。 包括 等均属于原生向量数据库。 除了选择专业的向量数据库,对传统数据库添加 “向量支持”也是主流方案。比如 等传 统数据库均已支持向量检索。 。 、 、 都是该形态出色的产品。 tldraw v0.dev Screenshot to code 23 / 32 LLM Agent(AI Agent) LLM Agent 是一种基于 LLM 的智能代理,它能够自主学习和执行任务, 具有一定的“认知能力和决策能力”。LLM Agent 的出现,标志着 LLM 从传统的模型训练和应用模式,转向以 Agent 为中心的智能化模 式。 处理器和基础软件构建 Atlas 人工智能计算解决 方案,打造面向“端、边、云”的全场景 AI 基础设施方案,覆盖深度学习领域推理和训练全流程。 被外界视为打破 NVIDIA 垄断 AI 算力市场的多一种选择,其基于第三代 CDNA 架构,为生 成式 AI 大语言模型设计的 MI300X 内存高达 192GB,集成了高达 1530 亿个晶体管,为历代产品 之最。 科技团队自研,面向通用AI计算的芯片核心架构昆仑芯0 码力 | 32 页 | 13.09 MB | 1 年前3
普通人学AI指南技术可以生成如下类型的内容: • 图像:如照片、原创艺术作品 • 音频:如视频游戏中的配音、音乐 • 文本:如代码、广告文案、小说 • 3D 模型:如角色、场景 目前,AIGC 技术处于早期阶段,最常见的产品形态是基于文本的,通过用 户输入来控制内容的生成。用户输入文本描述所需的内容,然后模型输出与描 述相符的内容。下图 1描述了 AI 大模型,AIGC 和 AGI 关系。 Figure 1: AI 大模型,AIGC 编程,AI 提 示词和 AI 大模型,一共梳理挑选共计 38 个 AI 工具,其中很多都是开源! 2.1 问答 2.1.1 ChatGPT ChatGPT 是一个由 OpenAI 开发的大型语言模型,它基于 GPT(Generative Pre-trained Transformer)架构。这种模型通过分析大量的文本数据来学习语 言结构和信息,使其能够生成连贯的文本、回答问题、撰写文章、进行对话等。 模型生成和优化提示语。 2.5.6 Snack Prompt 提供最新 AI 模型提示词的工具,旨在快速获取和使用最新的 AI 提示进行内容 创作。 2.6 AI 大模型 2.6.1 AgentGPT 一个基于浏览器的自主 AI 工具,专为交互式任务和自动化操作设计。 2.6.2 GPT-4 由 OpenAI 开发的最新大型语言模型,继承了 GPT-3 的能力,功能更加强大和 精确,但为闭源产品。 120 码力 | 42 页 | 8.39 MB | 8 月前3
清华大学第二弹:DeepSeek赋能职场2022全球人工智能技术创新大赛-商品标题实体识别 一等奖 第十八届中国计算语言学大会-小牛杯中文幽默计算 一等奖 第十届全国社会媒体处理大会-中文隐式情感分析 一等奖 2021全球开放数据应用创新大赛-基于文本挖掘的企业隐患排查质量分析模型 第一名 2021中国计算机学会大数据与计算智能大赛-“千言〞 问题匹配鲁棒性评测 第一名 2021年全国知识图谱与语义计算大会-医疗科普知识答非所问识别 第一名 搭配分镜图、视频及音乐提示词,确保创意风格与 情感统一。软件支持美学意象风格的短片创作,具备角色一致性技术,离线生成样片,同时实现分镜自动成片功能,全面满足从创意策划到视频制作的高效智能化需求 一款基于人机快生理念的AI视频创作系统,从需求提交到成片仅需10分钟,即可输出75分质量的视频。 你想要生成什么样的文案? 这样的文案具备哪些特征? 你要针对什么生成类似文案? 篇幅、用词、结构优化 如0 码力 | 35 页 | 9.78 MB | 8 月前3
人工智能安全治理框架 1.0开放合作、共治共享。在全球范围推动人工智能安全治理国际合作, 共享最佳实践,提倡建立开放性平台,通过跨学科、跨领域、跨地区、跨国界 的对话和合作,推动形成具有广泛共识的全球人工智能治理体系。 2. 人工智能安全治理框架构成 基于风险管理理念,本框架针对不同类型的人工智能安全风险,从技术、 管理两方面提出防范应对措施。同时,目前人工智能研发应用仍在快速发展, 安全风险的表现形式、影响程度、认识感知亦随之变化,防范应对措施也将相 数据备份和恢复计划,定期对数据处理流程进行检查。 (g)重点领域使用者应确保操作符合保密规定,在处理敏感数据时使用 加密技术等保护措施。 (h)重点领域使用者应对人工智能行为和影响进行有效监督,确保人工 智能产品和服务的运行基于人的授权、处于人的控制之下。 (i) 重点领域使用者应避免完全依赖人工智能的决策,监控及记录未采 纳人工智能决策的情况,并对决策不一致进行分析,在遭遇事故时具备及时切 换到人工或传统系统等的能力。0 码力 | 20 页 | 3.79 MB | 1 月前3
共 11 条
- 1
- 2













