积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部综合其他(15)人工智能(15)

语言

全部中文(简体)(12)中文(简体)(2)英语(1)

格式

全部PDF文档 PDF(14)TXT文档 TXT(1)
 
本次搜索耗时 0.024 秒,为您找到相关结果约 15 个.
  • 全部
  • 综合其他
  • 人工智能
  • 全部
  • 中文(简体)
  • 中文(简体)
  • 英语
  • 全部
  • PDF文档 PDF
  • TXT文档 TXT
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 开源中国 2023 大模型(LLM)技术报告

    LLM 技术报告 大语言模型(LLM) 技术作为人工智能领域的一项重要创 新在今年引起了广泛的关注。 LLM 是利用深度学习和大数据训练的人工智能系统,专门 设计来理解、生成和回应自然语言。这些模型通过分析大量 的文本数据来学习语言的结构和用法,从而能够执行各种语 言相关任务。以 GPT 系列为代表,LLM 以其在自然语言 处理领域的卓越表现,成为推动语言理解、生成和应用的引 擎。 LLM 理领域,GPT 系列模型在文本生成、问答系统和对话生成 等任务中展现出色的性能。在知识图谱构建、智能助手开发 等方面,LLM 技术也发挥了关键作用。此外,它还在代码 生成、文本摘要、翻译等任务中展现了强大的通用性。 本报告从技术人视角出发,将深入探讨 LLM 技术的背景、 基础设施、应用现状,以及相关的工具和平台。 2 / 32 LLM Tech Map  向量数据库  数据库向量支持  大模型框架、微调 大模型框架、微调 (Fine Tuning)  大模型训练平台与工具 基础设施 LLM Agent  备案上线的中国大模型  知名大模型  知名大模型应用 大模型 算力 工具和平台  LLMOps  大模型聚合平台  开发工具 AI 编程  插件、IDE、终端  代码生成工具 编程语言 3 / 32 LLM 技术背景 Transformer 架构和预训练与微调策略是
    0 码力 | 32 页 | 13.09 MB | 1 年前
    3
  • pdf文档 清华大学 DeepSeek+DeepResearch 让科研像聊天一样简单

    能做什么? 要怎么做? 效果如何? 一 能做什么? 数据挖掘 数据分析 数据采集 数据处理 数据可视化 AIGC 数据应用 通过编写爬虫代码、访问数据库、读取文件、调用API等方式,采 集社交媒体数据、数据库内容、文本数据、接口数据等。 通过数据清洗、数据集成、数据变换、特征工程等方式,实 现数据纠错、数据整合、格式转换、特征提取等。 对数据进行诊断、预测、关联、聚类分析,常用于问题 本质:以多agent实现从数据采集到可视全流程 模型特点 Claude 3.5 sonnet  平衡性能:在模型大小和 性能之间取得平衡,适合 中等规模任务。  多模态支持:支持文本和 图像处理,扩展应用场景。  可解释性:注重模型输出 的可解释性和透明性。 DeepSeek R1  高效推理:专注于低延迟和 高吞吐量,适合实时应用。  轻量化设计:模型结构优化, 资源占用少,适合边缘设备 提供高精度结果。  长文本处理:擅长处理长文本 和复杂文档,适合专业场景。  定制化能力:支持用户自定义 训练和微调,适应特定需求。 Open AI o3 mini  小型化设计:轻量级模型, 适合资源有限的环境。  快速响应:优化推理速度, 适合实时交互场景。  通用性强:适用于多种自 然语言处理任务,如对话 生成和文本理解。 爬虫数据采集 1、阅读网页源代码,提取特定网页内容;
    0 码力 | 85 页 | 8.31 MB | 7 月前
    3
  • pdf文档 普通人学AI指南

    Contents 1 AI 大模型基础 4 1.1 AIGC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.2 AGI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.3 大模型 . . . . . . . . . . . . . . . 12 2.5.6 Snack Prompt . . . . . . . . . . . . . . . . . . . . . . . . 12 2.6 AI 大模型 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.6.1 AgentGPT . . . . . . . . . 13 2.6.4 Llama3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3 零代码本地部署 AI 后端 13 3.1 大模型 Llama3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3.1.1 步骤 1:安装 Ollama . . . . .
    0 码力 | 42 页 | 8.39 MB | 7 月前
    3
  • pdf文档 【周鸿祎清华演讲】DeepSeek给我们带来的创业机会-360周鸿祎-202502

    AI能帮助人解决登陆火星、能源自由的问题 5政企、创业者必读 大模型是真智能,是人工智能的重大拐点。你相不相信? 大模型是一场工业革命,将重塑所有产品和业务。你相不相信? 不拥抱AI的组织和个人,会被拥抱AI的组织和个人淘汰。你相不相信? 建立AI信仰 6政企、创业者必读 大模型不是泡沫,而是新一轮工业革命的驱动引擎 蒸汽革命 电气革命 信息革命 以大模型为代表的 人工智能革命 人工智能是新质生产力 能 大模型的进一步突破将引领人类社会进入智能化时代,对我们的生活方式、生产方式带来巨大变革 重塑经济图景 解决复杂问题 7政企、创业者必读 8 AI不仅是技术革新,更是思维方式和社会结构的变革 国家 产业 个人 企业政企、创业者必读 人工智能发展历程(一)  从早期基于规则的专家系统,走向基于学习训练的感知型AI  从基于小参数模型的感知型AI,走向基于大参数模型的认知型AI 人工智能发展历程(二)  从单纯对话的大模型AI,发展到具有行动和执行能力的智能体AI  从数字空间中的AI,走向能理解和操控物理空间的AI  从解决现实问题的AI,走向解决科学问题的科学型AI 大模型AI 智能体AI 物理AI 科学AI 10政企、创业者必读 面对全球大模型产业之争,要打赢「三大战役」 AGI之战 应用场景之战 大模型安全之战 • 探索超越人类的超级人工 智能AGI
    0 码力 | 76 页 | 5.02 MB | 5 月前
    3
  • pdf文档 DeepSeek从入门到精通(20250204)

    DeepSeek是什么? AI + 国产 + 免费 + 开源 + 强大 • DeepSeek是一家专注通用人工智能(AGI)的中国科技公司,主攻大模型研发与应 用。 • DeepSeek-R1是其开源的推理模型,擅长处理复杂任务且可免费商用。 Deepseek可以做什么? 直接面向用户或者支持开发者,提供智能对话、文本生成、语义理解、计算推理、代码生成补全等应用场景, 当人人都会用AI时,你如何用得更好更出彩? 推理模型 • 例如:DeepSeek-R1,GPT-o3在逻辑推理、数学推理和实时问题解决方面表现突出。 推理大模型: 推理大模型是指能够在传统的大语言模型基础上,强化推理、逻辑分析和决策能力的模型。它 们通常具备额外的技术,比如强化学习、神经符号推理、元学习等,来增强其推理和问题解决能力。 非推理大模型: 适用于大多数任务,非推理大模型一般侧重于语言生成、上下文理解和自然语言处理,而不强 解和自然语言处理,而不强 调深度推理能力。此类模型通常通过对大量文本数据的训练,掌握语言规律并能够生成合适的内容,但缺乏像 推理模型那样复杂的推理和决策能力。 维度 推理模型 通用模型 优势领域 数学推导、逻辑分析、代码生成、复杂问题拆解 文本生成、创意写作、多轮对话、开放性问答 劣势领域 发散性任务(如诗歌创作) 需要严格逻辑链的任务(如数学证明) 性能本质 专精于逻辑密度高的任务 擅长多样性高的任务
    0 码力 | 104 页 | 5.37 MB | 7 月前
    3
  • pdf文档 清华大学 DeepSeek 从入门到精通

    DeepSeek是什么? AI + 国产 + 免费 + 开源 + 强大 • DeepSeek是一家专注通用人工智能(AGI)的中国科技公司,主攻大模型研发与应 用。 • DeepSeek-R1是其开源的推理模型,擅长处理复杂任务且可免费商用。 Deepseek可以做什么? 直接面向用户或者支持开发者,提供智能对话、文本生成、语义理解、计算推理、代码生成补全等应用场景, 当人人都会用AI时,你如何用得更好更出彩? 推理模型 • 例如:DeepSeek-R1,GPT-o3在逻辑推理、数学推理和实时问题解决方面表现突出。 推理大模型: 推理大模型是指能够在传统的大语言模型基础上,强化推理、逻辑分析和决策能力的模型。它 们通常具备额外的技术,比如强化学习、神经符号推理、元学习等,来增强其推理和问题解决能力。 非推理大模型: 适用于大多数任务,非推理大模型一般侧重于语言生成、上下文理解和自然语言处理,而不强 解和自然语言处理,而不强 调深度推理能力。此类模型通常通过对大量文本数据的训练,掌握语言规律并能够生成合适的内容,但缺乏像 推理模型那样复杂的推理和决策能力。 维度 推理模型 通用模型 优势领域 数学推导、逻辑分析、代码生成、复杂问题拆解 文本生成、创意写作、多轮对话、开放性问答 劣势领域 发散性任务(如诗歌创作) 需要严格逻辑链的任务(如数学证明) 性能本质 专精于逻辑密度高的任务 擅长多样性高的任务
    0 码力 | 103 页 | 5.40 MB | 8 月前
    3
  • pdf文档 DeepSeek图解10页PDF

    . . . . . . . . . . . 7 3.1.1 核心创新 1:含 R1-Zero 的中间推理模型 . . . . . . . 8 3.1.2 核心创新 2:通用强化学习 . . . . . . . . . . . . . . . 8 3.2 含 R1-Zero 的中间推理模型训练过程 . . . . . . . . . . . . . . 9 3.3 通用强化学习训练过程 . . . . . . . . . 11 1 1 本地部署并运行 DeepSeek 1.1 为什么要在本地部署 DeepSeek 在本地搭建大模型(如 DeepSeek)具有多个重要的优势,比如: 1. 保护隐私与数据安全。数据不外传:本地运行模型可以完全避免数据上 传至云端,确保敏感信息不被第三方访问。 2. 可定制化与优化。支持微调(Fine-tuning):可以根据特定业务需求对模 离线运行,适用于无网络环境。可在离线环境下运行:适用于无互联网 连接或网络受限的场景。提高系统稳定性:即使云服务宕机,本地大模型依 然可以正常工作,不受外部因素影响。 本教程搭建 DeepSeek 好处 本地搭建 DeepSeek 三个比较实际的好处: • 本教程接入的是 DeepSeek 推理模型 R1,开源免费,性能强劲 • 本教程搭建方法 零成本,不需花一分钱。 • 为了照顾到大部分读者,推荐的搭建方法已将电脑配置要求降
    0 码力 | 11 页 | 2.64 MB | 7 月前
    3
  • pdf文档 人工智能安全治理框架 1.0

    2 针对人工智能应用安全风险 ………………………… 9 5. 综合治理措施 ……………………………………………… 10 6. 人工智能安全开发应用指引 ……………………………… 12 6.1 模型算法研发者安全开发指引 ……………………… 12 6.2 人工智能服务提供者安全指引 ……………………… 13 6.3 重点领域使用者安全应用指引 ……………………… 14 6.4 社会公众安全应用指引 制和方式,对确需政府监管事项及时予以响应。 1.3 技管结合、协同应对。面向人工智能研发应用全过程,综合运用技术、 管理相结合的安全治理措施,防范应对不同类型安全风险。围绕人工智能研发 应用生态链,明确模型算法研发者、服务提供者、使用者等相关主体的安全责 任,有机发挥政府监管、行业自律、社会监督等治理机制作用。 1.4 开放合作、共治共享。在全球范围推动人工智能安全治理国际合作, 共享最佳实践, 应动态调整更新,需要各方共同对治理框架持续优化完善。 2.1 安全风险方面。通过分析人工智能技术特性,以及在不同行业领域 应用场景,梳理人工智能技术本身,及其在应用过程中面临的各种安全风险 隐患。 2.2 技术应对措施方面。针对模型算法、训练数据、算力设施、产品服务、 应用场景,提出通过安全软件开发、数据质量提升、安全建设运维、测评监测 加固等技术手段提升人工智能产品及应用的安全性、公平性、可靠性、鲁棒性- 3 - 人工智能安全治理框架
    0 码力 | 20 页 | 3.79 MB | 29 天前
    3
  • pdf文档 清华大学 普通人如何抓住DeepSeek红利

    • DeepSeek是一家专注通用人工智能(AGI)的中国科技公司,主攻大模型研发与应用。 • DeepSeek-R1是其开源的推理模型,擅长处理复杂任务且可免费商用。性能对齐OpenAI-o1正 式版。 • DeepSeek-R1在后训练阶段大规模使用了强化学习技术,在仅有极少标注数据的情况下,极大 提升了模型推理能力。在数学、代码、自然语言推理等任务上,性能比肩OpenAl-o1正式版。 Dataset),这个数据集 是一个著名的问答数据集,基于维基百科数据生成,并且数 据是2020年之前的。 AI幻觉问题抽取:多数据集 问题加载 探讨大语言模型(LLMs)在模拟人类意见动态和社 会现象(如极化和错误信息传播)中的表现,特别 是引入偏误信息后的意见动态变化。使用大模型模 拟多个虚拟代理,讨论“气候变暖”、“转基因食 品的安全性”和“疫苗的有效性和安全性”三个具 有科学共识的话题。 实验一在无偏误信息条件下,代理通过社交网络进 引入专业资源:如需要,可以寻求律师或家庭顾问的帮助,确保遗产分配的合法性和 公正性。 提示语策略差异 1 推理模型 2 通用模型 • 提示语更简洁, 只需明确任务目标和 需求(因其已内化推理逻辑) 。 • 无需逐步指导, 模型自动生成结构化 推理过程(若强行拆解步骤, 反而可 能限制其能力) 。 • 需显式引导推理步骤(如通过CoT提
    0 码力 | 65 页 | 4.47 MB | 7 月前
    3
  • pdf文档 清华大学第二弹:DeepSeek赋能职场

    For Culture & Art 文、图、乐、剧 Innovator For Social 智能角色交互体 Innovator For Science & Industry 行业大模型 基座大模型 人机协同 Chatbot •自然语言对话 Reasoner •基本的推理和问 题解决能力 Agent •代表用户执行任 务,具备自主行 动能力 Innovator • 参与发明和创造, • 致力于人机协同和人机共生领域的世界级团队,专注于打造能够驾驭AI、熟悉AI并实现人类与AI共生发展的学术与实践模式。 团队愿景 • 李默非(清华大学人工智能学院拟录博士生):人机共生之基座大模型研究研发 • 何静(清华博士后、北航助理教授):人机共生之快生引擎研究研发 • 尤可可(清华博士后、北石化助理教授):人机共生之AIGC短视频 • 安梦瑶(清华大学博士后):人机共生之AI诊疗研究 • 向安玲(清华博士后、中央民大助理教授):人机共生之AI数据分析领域 • 马绪峰(清华博士后、同济大学助理教授):人机共生之文化艺术创作 成员及核心研究方向 赛事 奖项 2024 “AI4S Cup LLM 挑战赛” 大模型科学文献分析赛道 一等奖 2024 Kaggl e The Learni ng Agency Lab - PII Data Detecti on 金牌 金山办公2024中文文本智能校对大赛 第二名
    0 码力 | 35 页 | 9.78 MB | 7 月前
    3
共 15 条
  • 1
  • 2
前往
页
相关搜索词
开源中国2023模型LLM技术报告清华大学DeepSeekDeepResearch科研普通通人普通人AI指南周鸿祎清华演讲我们带来创业机会360202502入门精通20250204华大大学图解10PDF人工智能人工智能安全治理框架1.0如何抓住红利第二赋能职场
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩