国家人工智能产业综合标准化体系建设指南(2024版)模型表达和格式、模型效果评价等,包括自监督学习、无监督学 习、半监督学习、深度学习、强化学习等标准。 2. 知识图谱标准。规范知识图谱的描述、构建、运维、共 享、管理和应用,包括知识表示与建模、知识获取与存储、知识 融合与可视化、知识计算与管理、知识图谱质量评价与互联互通、 9 知识图谱交付与应用、知识图谱系统架构与性能要求等标准。 3. 大模型标准。规范大模型训练、推理、部署等环节的技0 码力 | 13 页 | 701.84 KB | 1 年前3
DeepSeek图解10页PDF基础架构 LLM 依赖于 2017 年 Google 提出的 Transformer 模型,该架构相比传统的 RNN(递归神经网络)和 LSTM(长短时记忆网络)具有更高的训练效率和 更强的长距离依赖建模能力。Transformer 由多个关键组件组成:1. 自注意 力机制(Self-Attention):模型在处理文本时,会自动关注句子中的重要单 词,理解不同词语间的联系。2. 多头注意力(Multi-Head0 码力 | 11 页 | 2.64 MB | 8 月前3
开源中国 2023 大模型(LLM)技术报告:帮助用户极致优化 给大模型的提示词(prompt),使得对大语 言模型提问时,可以获得更理想的输出。 :用于语义搜索、LLM 编排和语言模 型工作流的一体化嵌入数据库,可以使用 SQL、对象存储、主题建模、图形分析和多模 态索引进行矢量搜索。 :专注以 Sketch、PSD、静态 图片等形式的视觉稿作为输入,通过智能化技 术一键生成可维护的前端代码,包含视图代码、 数据字段绑定、组件代码、部分业务逻辑代码。0 码力 | 32 页 | 13.09 MB | 1 年前3
清华大学 DeepSeek+DeepResearch 让科研像聊天一样简单同时保持与传统多头注意力(MHA) 相当的性能。MLA在训练中减少了 内存和计算开销,在推理中降低了 KV缓存占用空间。 多头潜在注意力(MLA)机制 通过序列化预测未来多个令牌,增强 模型的上下文建模能力,并支持推测 解码加速推理。MTP在特定场景下同 时预测多个令牌,提高信号密度,减 少上下文漂移和逻辑连贯性问题。 多令牌预测(MTP) 采用FP8混合精度训练,通过在训练 过程中使用更适宜的数据精度,减少0 码力 | 85 页 | 8.31 MB | 8 月前3
共 4 条
- 1













