积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部综合其他(12)人工智能(12)

语言

全部中文(简体)(9)中文(简体)(2)英语(1)

格式

全部PDF文档 PDF(12)
 
本次搜索耗时 0.028 秒,为您找到相关结果约 12 个.
  • 全部
  • 综合其他
  • 人工智能
  • 全部
  • 中文(简体)
  • 中文(简体)
  • 英语
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 清华大学 DeepSeek+DeepResearch 让科研像聊天一样简单

    多任务支持:支持多种任务, 如文本生成、分类和问答。 Kimi k1.5  垂直领域优化:针对特定领域 (如医疗、法律)进行优化, 提供高精度结果。  长文本处理:擅长处理长文本 和复杂文档,适合专业场景。  定制化能力:支持用户自定义 训练和微调,适应特定需求。 Open AI o3 mini  小型化设计:轻量级模型, 适合资源有限的环境。  快速响应:优化推理速度, 和办公工具,提升企业竞争力。 • 开源AI教育平台:借助DeepSeek R1 的低成本特性,创建开源AI教育平台,提供 免费课程和实验资源,促进AI教育普及。 • 智能编程教育助手:为编程学生提供实 时编程指导,自动生成代码示例,帮助解决 编程难题。 • 自动化代码审查工具:自动审查代码, 发现潜在问题并提供优化建议,提升开发效 率与代码质量。 新思路:Open AI o3mini的数据应用 occurred. 改写降重指令 指令:我想让你充当科研写作专家,并提供一些英文或中文段落,你的任务是用原文改写段落。你应该使用 人工智能工具(如自然语言处理)、修辞知识和你在有效科学写作技巧方面的专业知识来回答。请只提供改 写后的文本,不作任何解释,请用科研语气风格重写下面的文字: 解读文献配图指令 指令:这是发表在【杂志名称】期刊上的一篇论文中的一幅图,标题为【文章标题】,图例为【图的标
    0 码力 | 85 页 | 8.31 MB | 8 月前
    3
  • pdf文档 【周鸿祎清华演讲】DeepSeek给我们带来的创业机会-360周鸿祎-202502

    大模型发展范式正在从「预训练」转向「后训练」和「推理时计算」  大模型厂商都在探索慢思考、思维链技术政企、创业者必读 DeepSeek出现之前的十大预判 之三 模型越做越专  除了少数科技巨头,大多数公司都专注于做专业大模型  MoE架构盛行,本质是多个专家模型组成一个大模型  Deepmind的Alpha系列产品是这一趋势的最佳诠释 16政企、创业者必读 DeepSeek出现之前的十大预判 之四 模型越做越小  多模态模态在能力变强的同时,规模正在变小 20政企、创业者必读 21 DeepSeek出现之前的十大预判 之八 智能体推动大模型快速落地  能够调用各种工具,具有行动能力  调用企业专业知识,更懂企业  将日常重复性业务流程形成Playbook,实现流程自动化  通过目标拆解,多次调用大模型以及专家模型协同,形成 慢思考能力 传统软件是辅助人的工具,Agent是能够自主工作 赋予自动驾驶复杂物理世界理解能力 从规则驱动到学习驱动 43政企、创业者必读  人工智能的目标是星辰大海,是为了让人类在科技上有突破  基于DeepSeek的强推理模型,利用科学领域专业知识进行强化学习, 能够打造更加专业的科学推理模型 DeepSeek六大应用方向之五 科学研究:打造科研新范式 44政企、创业者必读 AI For Science,为基础科学带来革命性变化 2024诺贝尔化
    0 码力 | 76 页 | 5.02 MB | 5 月前
    3
  • pdf文档 清华大学第二弹:DeepSeek赋能职场

    DeepSeek 三种模式对比 • 基础模型(V3):通用模型(2024.12),高效便捷,适用于绝大多数任务,“ ”任务 • 深度思考(R1):推理模型,复杂推理和深度分析任务,如数理逻辑推理和编程代码,“ ”任务 • 联网搜索:RAG(检索增强生成),知识库更新至 DeepSeek 两种模型对比 操作规范清晰 且对结果有明确要求 操作路径多元、开放, 且对结果没有明确要求 DeepSeek 想 要的写作风格, 如严肃的、有趣 的、创新性表达、 学术性…… "T"代表“Tone (语调)” 幽 默的?情绪化? 有威胁性? "A"代表 "Audience", 受众是谁。 小 白用户?专业人 群?未成年群体? 女性群体? DeepSeek R1提示语技巧(开放性) • 不需要角色设定 • 不需要思维链提示 • 不需要结构化提示词 • 不需要给示例 • 不需要做太多解释 • Prompting Framework, CAP Framework) 核心层: 1.身份定义 (Identity) •角色属性 •专业背景 •交互特征 执行层: 2. 能力矩阵 (Capability Matrix) •功能范围 •专业技能 •决策权限 约束层: 3. 边界系统 (Boundary System) •伦理规范 •安全限制 •资源约束 操作层:
    0 码力 | 35 页 | 9.78 MB | 8 月前
    3
  • pdf文档 清华大学 普通人如何抓住DeepSeek红利

    工具调用 格式转换 关系抽取 语言理解 文案写作 代码注释 故事创作 通用问答 专业领域问答 因果推理 知识推理 问答系统 逻辑推理 自然语言处理 文本生成与创作 建议生成 风险评估 辅助决策 概念关联 知识整合 交互能力 情感分析 文本分类 图像理解 跨模态转换 专业建议 任务分解 情感回应 上下文理解 对话能力 多轮对话 数学运算 逻辑分析 拣设备的配置数量,用表格展示。” p 模板复制:对同类章节(如3.1/3.2/3.3)使用相同指令模板,仅替换关键词。 p 强制格式:要求AI输出带编号小标题、分点、表格的内容,直接粘贴后即显“专业感”。 第三阶段:20分钟——用AI补全软性内容(目标:1000字) 填充“虚但必需”的部分: p 政策背书: “生成5条2023年国家层面支持智能物流园区的政策原文(带发文号),并解读对本案的指导意义。” 如果信息不明确,可能需要转接其他同事或部门,进一步延误响应时间。 p 客户可能因为等待时间过长而感到不满,甚至导致投诉或对公司专业性的质疑。 通过DeepSeek,个人可以在以下几个方面快速提升自己的工作效率和专业性: 快速响应客户问题: 无需手动查阅多个系统,DeepSeek可以帮助你在几秒钟内找到答案。 提供更专业的建议: DeepSeek的数据分析能力可以帮助你理解客户需求,并提供更有针对性的建议。 减少错误:
    0 码力 | 65 页 | 4.47 MB | 8 月前
    3
  • pdf文档 开源中国 2023 大模型(LLM)技术报告

    Agent  备案上线的中国大模型  知名大模型  知名大模型应用 大模型 算力 工具和平台  LLMOps  大模型聚合平台  开发工具 AI 编程  插件、IDE、终端  代码生成工具 编程语言 3 / 32 LLM 技术背景 Transformer 架构和预训练与微调策略是 LLM 技术的核心,随着大规模语言数据集的可用性和计算能 力的提升,研究者们开 (Fine Tuning) 大模型框架提供基本能力和普适性,而微调 则是实现特定应用和优化性能的关键环节 大模型训练平台&工具 提供了在不同硬件和环境中训练大语言模型 所需的基础设施和支持 编程语言 以 Python 为代表 5 / 32 LLM 基础设施:向量数据库/数据库向量支持 向量数据库是专门用于存储和检索向量数据的数据库,它可以为 LLM 提供高效的存储和检索能力。通过数据向量化,实现了 根据向量数据库的的实现方式,可以将向量数据库大致分为两类: 原生的向量数据库专门为存储和检索向量而设计, 所管理的数据是基于对象或数据点的向量表示进行 组织和索引。 包括 等均属于原生向量数据库。 除了选择专业的向量数据库,对传统数据库添加 “向量支持”也是主流方案。比如 等传 统数据库均已支持向量检索。 6 / 32 LLM 基础设施:向量数据库/数据库向量支持 自 2022 年 ChatGPT
    0 码力 | 32 页 | 13.09 MB | 1 年前
    3
  • pdf文档 DeepSeek从入门到精通(20250204)

    因果分析(事件关联性) 语义分析 语义解析 情感分析(评论、反馈) 意图识别(客服对话、用户查询) 实体提取(人名、地点、事件) 文本分类 文本分类 主题标签生成(如新闻分类) 垃圾内容检测 编程与代码相关 代码调试 • 错 误 分 析 与 修 复 建议 • 代 码 性 能 优 化 提 示 技术文档处理 • API文档生成 • 代码库解释与示 例生成 代码生成 • 根 据 利用类比、反向思考等技巧拓展AI输出的可能性 巧妙结合不同领域概念,产生跨界创新 结果优化能力 分析AI输出,识别改进空间 通过迭代调整提示语,优化输出质量 设计评估标准,量化提示语效果 跨域整合能力 将专业领域知识转化为有效的提示语 利用提示语桥接不同学科和AI能力 创造跨领域的创新解决方案 系统思维 设计多步骤、多维度的提示语体系 构建提示语模板库,提高效率和一致性 开发提示语策略,应对复杂场景 风格元素 通过清晰的任务指令和预定义的结构提高执行效率,同时确保输出符合特定的 格式和风格要求 提升输出一致性 风格元素 + 知识域元素 + 约束条 件元素 格式元素 + 质量控制元素 通过统一的风格和专业领域知识确保输出的一致性,同时使用约束条件和质量 控制维持标准 增强交互体验 迭代指令元素 + 输出验证元素 + 质量控制元素 任务指令元素 + 背景元素 建立动态的交互模式,允许AI进行自我验证和优化,同时根据任务和背景灵活
    0 码力 | 104 页 | 5.37 MB | 8 月前
    3
  • pdf文档 清华大学 DeepSeek 从入门到精通

    因果分析(事件关联性) 语义分析 语义解析 情感分析(评论、反馈) 意图识别(客服对话、用户查询) 实体提取(人名、地点、事件) 文本分类 文本分类 主题标签生成(如新闻分类) 垃圾内容检测 编程与代码相关 代码调试 • 错 误 分 析 与 修 复 建议 • 代 码 性 能 优 化 提 示 技术文档处理 • API文档生成 • 代码库解释与示 例生成 代码生成 • 根 据 利用类比、反向思考等技巧拓展AI输出的可能性 巧妙结合不同领域概念,产生跨界创新 结果优化能力 分析AI输出,识别改进空间 通过迭代调整提示语,优化输出质量 设计评估标准,量化提示语效果 跨域整合能力 将专业领域知识转化为有效的提示语 利用提示语桥接不同学科和AI能力 创造跨领域的创新解决方案 系统思维 设计多步骤、多维度的提示语体系 构建提示语模板库,提高效率和一致性 开发提示语策略,应对复杂场景 风格元素 通过清晰的任务指令和预定义的结构提高执行效率,同时确保输出符合特定的 格式和风格要求 提升输出一致性 风格元素 + 知识域元素 + 约束条 件元素 格式元素 + 质量控制元素 通过统一的风格和专业领域知识确保输出的一致性,同时使用约束条件和质量 控制维持标准 增强交互体验 迭代指令元素 + 输出验证元素 + 质量控制元素 任务指令元素 + 背景元素 建立动态的交互模式,允许AI进行自我验证和优化,同时根据任务和背景灵活
    0 码力 | 103 页 | 5.40 MB | 8 月前
    3
  • pdf文档 DeepSeek-V2: A Strong, Economical, and Efficient Mixture-of-Experts Language Model

    Fund. Chi. Open. Writ. Role. Pro. 模型 总分 推理 总分 数学 计算 逻辑 推理 语言 总分 基本 任务 中文 理解 综合 问答 文本 写作 角色 扮演 专业 能力 GPT-4-1106-Preview 8.01 7.73 7.80 7.66 8.29 7.99 7.33 8.61 8.67 8.47 8.65 DeepSeek-V2 Chat (RL) 的正确答案。 根据我国心理学家冯忠良教授的学习分类,培养学生品德要通过____。 A. 知识的学习 B. 技能的学习 C. 行为规范的学习 D. 态度的学习 答案:C 开设跨学科课程或建立跨学科专业体现了高等教育课程发展的____。 A. 综合化趋势 B. 多样化趋势 C. 人文化趋势 D. 科学化趋势 答案:A 心智技能的特点有____。 A. 物质性、外显性、简缩性 B. 观念性、内潜性、简缩性
    0 码力 | 52 页 | 1.23 MB | 1 年前
    3
  • pdf文档 Deepseek R1 本地部署完全手册

    为技术团队提供完整的本地部署指南,涵盖硬件配置、国产芯⽚适配、量化⽅案、云端替代⽅ 案及完整671B MoE模型的Ollama部署⽅法。 核⼼提示: 个⼈⽤户:不建议部署32B及以上模型,硬件成本极⾼且运维复杂。 企业⽤户:需专业团队⽀持,部署前需评估ROI(投资回报率)。 ⼆、本地部署核⼼配置要求 1. 模型参数与硬件对应表 模型参 数 Windows 配置要求 Mac 配置要求 适⽤场景 1.5B - RAM:
    0 码力 | 7 页 | 932.77 KB | 8 月前
    3
  • pdf文档 普通人学AI指南

    . . . . . . . . . 9 2.3.9 EBSynth . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.4 AI 编程工具 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.4.1 DEvv . . . . . . . . . . . 工具太多,种类太多,老的还没用,新的就出来,头大得 很!有没有这种感觉?所以,在这一章,梳理主流的 AI 工具,注意不是穷举, 那些不经常用的工具,不浪费文字和耽误时间。 梳理总结六大类 AI 工具,分别包括:问答,图像,视频,AI 编程,AI 提 示词和 AI 大模型,一共梳理挑选共计 38 个 AI 工具,其中很多都是开源! 2.1 问答 2.1.1 ChatGPT ChatGPT 是一个由 OpenAI 开发的大型语言模型,它基于 开源:一个开源的视频处理工具,用于将艺术风格应用到视频帧中。 2.4 AI 编程工具 2.4.1 DEvv 程序员的新一代 AI 搜索引擎,专为编程和技术问题检索设计。 2.4.2 JetBrains AI AI 编程开发助手,集成在 JetBrains 系列开发工具中,提升编码效率。 9 Figure 6: AI 编程工具 2.4.3 AirOps 用于生成和修改 SQL 语句的工具,旨在简化数据库操作。
    0 码力 | 42 页 | 8.39 MB | 8 月前
    3
共 12 条
  • 1
  • 2
前往
页
相关搜索词
清华大学DeepSeekDeepResearch科研周鸿祎清华演讲我们带来创业机会360202502华大大学第二赋能职场普通通人普通人如何抓住红利开源中国2023模型LLM技术报告入门精通20250204V2StrongEconomicalandEfficientMixtureofExpertsLanguageModelDeepseekR1本地部署完全手册AI指南
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩