积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部后端开发(28)C++(28)

语言

全部中文(简体)(28)

格式

全部PPT文档 PPT(19)PDF文档 PDF(9)
 
本次搜索耗时 0.017 秒,为您找到相关结果约 28 个.
  • 全部
  • 后端开发
  • C++
  • 全部
  • 中文(简体)
  • 全部
  • PPT文档 PPT
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • ppt文档 C++高性能并行编程与优化 - 课件 - 性能优化之无分支编程 Branchless Programming

    性能优化 之 无分支编程 Branchless Programming by 彭于斌( @archibate ) 两种代码写法:分支 vs 三目运算符 两种使用方式:排序 vs 不排序 测试结果(均为 gcc -O3 ) 测试结果可视化 图表比较:分支 vs 无分支 分支 无分支 0 0.01 0.02 0.03 耗时(越低越好) 乱序 有序 • 传统的分支方法实现的 uppercase ,对于 排序过的数据明显比乱序时高效。 • 无分支的方法对于乱序和有序的数据一样 高效,性能吊打了传统的分支方法。 • 对于传统分支的做法,为什么排序了的更 高效?既然无分支更高效,我要怎样优化 才能让我的程序变成无分支的呢?那就来 看本期性能优化专题课吧! 分支预测成败对性能的影响 排序为什么对有分支的版本影响那么大 为什么需要流水线 • 为了高效, CPU 的内部其实是一个流水 、 90% 、 99% 直到有一次, 突然出现了一次分支 B 成功的案例, CPU 瞬间被打脸!不得不浪费 99% 已经填满 A 数 据的流水线清空,重启整个流水线,这就是分支预测失败,他是导致分支性能低下的罪魁祸 首。不过被打了一次脸的 CPU 还不敢相信,觉得这可能只是碰巧,下一次还是会执行分 支 A 的吧,所以他只是把分支 A 的比例下调到 80% ,直到第二次又被打脸,下调到最初 的起点 50%……
    0 码力 | 47 页 | 8.45 MB | 1 年前
    3
  • ppt文档 C++高性能并行编程与优化 - 课件 - 17 由浅入深学习 map 容器

    • 等价于: • const K &k = tmp.first; • V &v = tmp.second; • 其实,就算遍历时不修改,还是建议加引用,在 K 和 V 类型尺寸很大时,可以节省性能 。 • 因为引用最多只有 8 字节(指针的大小),而他指向的 V 可能是非常大的(比如 string 类型在栈上的空间就要消耗 32 字节,更不用说可能堆上还有),深拷贝一下要花费不少 时间。 map 中的 堆空间 执行你这段代码 的栈空间 & ( 深拷贝,浪费时间 ) v (假如非常大的话) • 其实,就算遍历时不修改,还是建议加引用,在 K 和 V 类型尺寸很大时,可以节省性能 。 • 因为引用最多只有 8 字节(指针的大小),而他指向的 V 可能是非常大的(比如 string 类型在栈上的空间就要消耗 32 字节,更不用说可能堆上还有),深拷贝一下要花费不少 时间。
    0 码力 | 90 页 | 8.76 MB | 1 年前
    3
  • ppt文档 C++高性能并行编程与优化 - 课件 - 11 现代 CMake 进阶指南

    --build 指令,不同平台,统一命 令! • cmake -B build • cmake --build build -j4 • sudo cmake --build build --target install • cmake -B build 免去了先创建 build 目录再切换进去再指定源码目录的麻烦。 • cmake --build build 统一了不同平台( Linux 上会调用 CMAKE_INSTALL_PREFIX ) -G 选项:指定要用的生成器 • 众所周知, CMake 是一个跨平台的构建系统,可以从 CMakeLists.txt 生成不同类型的构建系 统(比如 Linux 的 make , Windows 的 MSBuild ),从而让构建规则可以只写一份,跨平 台使用。 • 过去的软件(例如 TBB )要跨平台,只好 Makefile 的构建规则写一份, MSBuild 也写一份 。 生成器; MacOS 系统默认是 Xcode 生成器。 • 可以用 -G 参数改用别的生成器,例如 cmake -GNinja 会生成 Ninja 这个构建系统的构 建规则。 Ninja 是一个高性能,跨平台的构建系统, Linux 、 Windows 、 MacOS 上都可 以用。 • Ninja 可以从包管理器里安装,没有包管理器的 Windows 可以用 Python 的包管理器安 装:
    0 码力 | 166 页 | 6.54 MB | 1 年前
    3
  • ppt文档 C++高性能并行编程与优化 - 课件 - 08 CUDA 开启的 GPU 编程

    global 可以调 用 device ; device 可以调用 device 。 声明为内联函数 • 注意, inline 在现代 C++ 中的效果是声明一个函数为 weak 符号,和性能优化意义上的内联无关。 • 优化意义上的内联指把函数体直接放到调用者那里去。 • 因此 CUDA 编译器提供了一个“私货”关键字: __inline__ 来 声明一个函数为内联。不论是 CPU 获取 y 方向的线程编号,以此类推。 那二维呢? • 需要二维的话,只需要把 dim3 最后一位 ( z 方向)的值设为 1 即可。这样就只有 xy 方向有大小,就相当于二维了,不会有 性能损失。实际上一维的 <<>> 不 过是 <<>> 的简写而已。 图片解释三维的板块和线程 • 之所以会把 blockDim 先传回到 CPU 再进行调用,这是 CUDA 特有的能力。 常用于这种情况:需要从 GPU 端动态计算出 blockDim 和 gridDim ,而又不希望导回数据到 CPU 导致强制同步影响性能。 这种模式被称为动态并行( dynamic parallelism ), OpenGL 有一 个 glDispatchComputeIndirect 的 API 和这个很像,但毕竟没有 CUDA
    0 码力 | 142 页 | 13.52 MB | 1 年前
    3
  • ppt文档 C++高性能并行编程与优化 - 课件 - 07 深入浅出访存优化

    _mm_malloc(n, aalign) 可以分配对齐 到任意 a 字节的内存。他在 这个头文件里。是 x86 特有的,并且需要通 过 _mm_free 来释放。 • 还有一个跨平台版本(比如用于 arm 架构) 的 aligned_alloc(align, n) ,他也可以分配对 齐到任意 a 字节的内存,通过 free 释放。 • 利用他们可以实现分配对齐到页面( 4KB 就没问题,因为他们是静态大小,编译器可 以检测到并自动扁平化,转换成乘法和加法来计算地址。 今日乳 Ja (1/1) 有一种病 ~ 叫 JavaBean~ 为什么二级指针是低效的存储和索引方式 随机访问性能测试 内存分配性能测试 二维数组:行主序与列主序 • 实际上二维数组的扁平化分为两种方法,行主序与列主序。 • (以下符号约定: i 行号, j 列号; n 行数, m 列数) • C/C++ 编译器把静态数组 我们已经仁至义尽地尽量 消除了。 • 如果单单采用手动预取,或者单单采用循环分块,那反而还会变慢。这就是性能调优中的一 大难点:某个改动可能对性能没有效果,甚至反而产生负面效果。然而有经验的优化人员会 知道,这不一定意味着这项改动是错的:有可能要配合多个改动一起上,才能有正面效果。 • 性能优化我们需要尝试所有的排列组合,而不能使用控制变量法,否则无法发现这种组合拳 。 用 stream 直写,进一步优化写入带宽
    0 码力 | 147 页 | 18.88 MB | 1 年前
    3
  • ppt文档 C++高性能并行编程与优化 - 课件 - 01 学 C++ 从 CMake 学起

    学 C++ 从 CMake 学起 by 彭于斌( @archibate ) 高性能并行编程与优化 - 课程大纲 • 分为前半段和后半段,前半段主要介绍现代 C++ ,后半段主要介绍并行编程与优化。 1.课程安排与开发环境搭建: cmake 与 git 入门 2.现代 C++ 入门:常用 STL 容器, RAII 内存管理 3.现代 C++ 进阶:模板元编程与函数式编程 4.编译器如何自动优化:从汇编角度看 线程(并行课…) 英伟达家显卡( GPU 专题) 软件要求: Visual Studio 2019 ( Windows 用户) GCC 9 及以上( Linux 用户) CMake 3.12 及以上(跨平台作业) Git 2.x (作业上传到 GitHub ) CUDA Toolkit 10.0 以上( GPU 专题) 关于作者 • 我是 Taichi 编译器的贡献者之一( https://github python 可以做很多判断等。 4. 不同的编译器有不同的 flag 规则,为 g++ 准备的参数可能对 MSVC 不适用。 构建系统的构建系统( CMake ) • 为了解决 make 的以上问题,跨平台的 CMake 应运而生! • make 在 Unix 类系统上是通用的,但在 Windows 则不然。 • 只需要写一份 CMakeLists.txt ,他就能够在调用时生成当前系统所支持的构建系统。
    0 码力 | 32 页 | 11.40 MB | 1 年前
    3
  • ppt文档 C++高性能并行编程与优化 - 课件 - 06 TBB 开启的并行编程之旅

    往期录播: https://www.bilibili.com/video/BV1fa411r7zp 课程 PPT 和代码: https://github.com/parallel101/course 高性能并行编程与优化 - 课程大纲 • 分为前半段和后半段,前半段主要介绍现代 C++ ,后半段主要介绍并行编程与优化。 1.课程安排与开发环境搭建: cmake 与 git 入门 2.现代 C++ 线程(并行课…) 英伟达家显卡( GPU 专题) 软件要求: Visual Studio 2019 ( Windows 用户) GCC 9 及以上( Linux 用户) CMake 3.12 及以上(跨平台作业) Git 2.x (作业上传到 GitHub ) CUDA Toolkit 10.0 以上( GPU 专题) 第 0 章:从并发到并行 摩尔定律:停止增长了吗? • 晶体管的密度的确仍在指数增长,但处理器主 • 可为何直到今天也生产不出 10GHz 的芯片? • 结论:狭义的摩尔定律没有失效。但晶体管数 量的增加,不再用于继续提升单核频率,转而 用于增加核心数量。单核性能不再指数增长! 你醒啦?免费午餐结束了! 指望靠单核性能的增长带来程序性 能提升的时代一去不复返了,现在 要我们动动手为多核优化一下老的 程序,才能搭上摩尔定律的顺风车 。 神话与现实: 2 * 3GHz < 6GHz •
    0 码力 | 116 页 | 15.85 MB | 1 年前
    3
  • ppt文档 C++高性能并行编程与优化 - 课件 - 03 现代 C++ 进阶:模板元编程

    往期录播: https://www.bilibili.com/video/BV1fa411r7zp 课程 PPT 和代码: https://github.com/parallel101/course 高性能并行编程与优化 - 课程大纲 • 分为前半段和后半段,前半段主要介绍现代 C++ ,后半段主要介绍并行编程与优化。 1.课程安排与开发环境搭建: cmake 与 git 入门 2.现代 C++ 线程(并行课…) 英伟达家显卡( GPU 专题) 软件要求: Visual Studio 2019 ( Windows 用户) GCC 9 及以上( Linux 用户) CMake 3.12 及以上(跨平台作业) Git 2.x (作业上传到 GitHub ) CUDA Toolkit 10.0 以上( GPU 专题) 为什么需要模板函数( template ) • 避免重复写代码。 • 比如,利用重载实现“将一个数乘以 Numeric 接口类并实现 ,其中 multiply(int) 作为虚函数。然后定义: Numeric *twice(Numeric *t) { return t->multiply(2); } 且不说这样的性能问题,你忍得住寂寞去重复定义好 几个,然后每个运算符都要声明一个纯虚函数吗? 而且, Float 的乘法应该是 multiply(float) ,你也去 定义好几个重载吗?定义为 multiply(Numeric
    0 码力 | 82 页 | 12.15 MB | 1 年前
    3
  • ppt文档 C++高性能并行编程与优化 - 课件 - 02 现代 C++ 入门:RAII 内存管理

    github@archibate ) 往期录播: https://space.bilibili.com/263032155 PPT 和代码: https://github.com/parallel101/course 高性能并行编程与优化 - 课程大纲 • 分为前半段和后半段,前半段主要介绍现代 C++ ,后半段主要介绍并行编程与优化。 1.课程安排与开发环境搭建: cmake 与 git 入门 2.现代 C++ 线程(并行课…) 英伟达家显卡( GPU 专题) 软件要求: Visual Studio 2019 ( Windows 用户) GCC 9 及以上( Linux 用户) CMake 3.12 及以上(跨平台作业) Git 2.x (作业上传到 GitHub ) CUDA Toolkit 10.0 以上( GPU 专题) 从一个案例看 C++ 的历史 • 求一个列表中所有数的和: # 参考资料 - 仅当出现“修改一个成员时,其他也成员要 被修改,否则出错”的现象时,才需要 getter/setter 封装。 • 各个成员之间相互正交,比如数学矢量类 Vec3 ,就没必要去搞封装,只会让程序员 变得痛苦,同时还有一定性能损失:特别 是如果 getter/setter 函数分离了声明和定 义,实现在另一个文件时! C++ 思想: RAII ( Resource Acquisition Is Initialization
    0 码力 | 96 页 | 16.28 MB | 1 年前
    3
  • ppt文档 C++高性能并行编程与优化 - 课件 - Zeno 中的现代 C++ 最佳实践

    生类的某些函数(我们这个例子中是拷贝构造函数)。 • 我们的目的是让基类能调用派生类的函数,其实本来是可以通过虚函数的,但是: • 1. 虚函数是运行时确定的,有一定的性能损失。 • 2. 拷贝构造函数无法作为虚函数。 • 这就构成了 CRTP 的两大常见用法: • 1. 更高性能地实现多态。 • 2. 伺候一些无法定义为虚函数的函数,比如拷贝构造,拷贝赋值等。 • https://www.jianshu.com/p/ec8a01cba496
    0 码力 | 54 页 | 3.94 MB | 1 年前
    3
共 28 条
  • 1
  • 2
  • 3
前往
页
相关搜索词
C++高性性能高性能并行编程优化课件1711080701060302
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩