C++高性能并行编程与优化 - 课件 - 07 深入浅出访存优化通常来说,并行只能加速计算的部分,不能加速内存读写的部分 。 • 因此,对 fill 这种没有任何计算量,纯粹只有访存的循环体,并 行没有加速效果。称为内存瓶颈( memory-bound )。 • 而 sine 这种内部需要泰勒展开来计算,每次迭代计算量很大的 循环体,并行才有较好的加速效果。称为计算瓶颈( cpu- bound )。 • 并行能减轻计算瓶颈,但不减轻内存瓶颈,故后者是优化的重点 1024 并非随意选取,而是要让每 个属性 SOA 数组的大小为一个页 ( 4KB )才能最高效,原因稍后会说明。 AOSOA :注意,内部 SOA 的尺寸不宜太小 如果内部 SOA 太小,内部循环只有 16 次连续的读 取, 16 次结束后就会跳跃一段,然后继续连续的 读取。这会导致 CPU 预取机制失效,无法预测下 一次要读哪里,等发现跳跃时已经来不及了,从而 计算的延迟无法隐藏。 如果每个属性都要访问到,那还是 解的伪代码,延迟和花费的时钟周期等。 第 4 章:循环合并法 两个循环体 • 原始的代码第一个循环体执行 a[i] = a[i] * 2 ,等乘法全 部结束了以后,再来一个循环体执行 a[i] = a[i] + 1 。 • 因为第一遍循环过了 1GB 的数据,执行到 a[n-1] 时 ,原本 a[0] 处的缓存早已失效,因此第二遍循环开始 读取 a[0] 时必须重新从主内存读取,然后再次写回主0 码力 | 147 页 | 18.88 MB | 1 年前3
Hello 算法 1.0.0b5 C++版1. 将扑克牌划分为“有序”和“无序”两部分,并假设初始状态下最左 1 张扑克牌已经有序。 2. 在无序部分抽出一张扑克牌,插入至有序部分的正确位置;完成后最左 2 张扑克已经有序。 3. 不断循环步骤 2. ,每一轮将一张扑克牌从无序部分插入至有序部分,直至所有扑克牌都有序。 图 1‑2 扑克排序步骤 上述整理扑克牌的方法本质上是“插入排序”算法,它在处理小型数据集时非常高效。许多编程语言的排序 iteration」是一种重复执行某个任务的控制结构。在迭代中,程序会在满足一定的条件下重复执行某 段代码,直到这个条件不再满足。 1. for 循环 for 循环是最常见的迭代形式之一,适合预先知道迭代次数时使用。 以下函数基于 for 循环实现了求和 1 + 2 + ⋯ + ? ,求和结果使用变量 res 记录。需要注意的是,Python 中 range(a, b) 对应的区间是“左闭右开”的,对应的遍历范围为 对应的区间是“左闭右开”的,对应的遍历范围为 ?, ? + 1, … , ? − 1 。 // === File: iteration.cpp === /* for 循环 */ int forLoop(int n) { int res = 0; // 循环求和 1, 2, ..., n-1, n for (int i = 1; i <= n; ++i) { res += i; } return res;0 码力 | 377 页 | 30.69 MB | 1 年前3
Hello 算法 1.1.0 C++ 版1. 将扑克牌划分为“有序”和“无序”两部分,并假设初始状态下最左 1 张扑克牌已经有序。 2. 在无序部分抽出一张扑克牌,插入至有序部分的正确位置;完成后最左 2 张扑克已经有序。 3. 不断循环步骤 2. ,每一轮将一张扑克牌从无序部分插入至有序部分,直至所有扑克牌都有序。 图 1‑2 扑克排序步骤 上述整理扑克牌的方法本质上是“插入排序”算法,它在处理小型数据集时非常高效。许多编程语言的排序 迭代(iteration)是一种重复执行某个任务的控制结构。在迭代中,程序会在满足一定的条件下重复执行某段 代码,直到这个条件不再满足。 1. for 循环 for 循环是最常见的迭代形式之一,适合在预先知道迭代次数时使用。 以下函数基于 for 循环实现了求和 1 + 2 + ⋯ + ? ,求和结果使用变量 res 记录。需要注意的是,Python 中 range(a, b) 对应的区间是“左闭右开”的,对应的遍历范围为 对应的区间是“左闭右开”的,对应的遍历范围为 ?, ? + 1, … , ? − 1 : // === File: iteration.cpp === /* for 循环 */ int forLoop(int n) { int res = 0; // 循环求和 1, 2, ..., n-1, n for (int i = 1; i <= n; ++i) { res += i; } return res;0 码力 | 379 页 | 18.47 MB | 1 年前3
Hello 算法 1.0.0 C++版1. 将扑克牌划分为“有序”和“无序”两部分,并假设初始状态下最左 1 张扑克牌已经有序。 2. 在无序部分抽出一张扑克牌,插入至有序部分的正确位置;完成后最左 2 张扑克已经有序。 3. 不断循环步骤 2. ,每一轮将一张扑克牌从无序部分插入至有序部分,直至所有扑克牌都有序。 图 1‑2 扑克排序步骤 上述整理扑克牌的方法本质上是“插入排序”算法,它在处理小型数据集时非常高效。许多编程语言的排序 iteration」是一种重复执行某个任务的控制结构。在迭代中,程序会在满足一定的条件下重复执行某 段代码,直到这个条件不再满足。 1. for 循环 for 循环是最常见的迭代形式之一,适合在预先知道迭代次数时使用。 以下函数基于 for 循环实现了求和 1 + 2 + ⋯ + ? ,求和结果使用变量 res 记录。需要注意的是,Python 中 range(a, b) 对应的区间是“左闭右开”的,对应的遍历范围为 对应的区间是“左闭右开”的,对应的遍历范围为 ?, ? + 1, … , ? − 1 : // === File: iteration.cpp === /* for 循环 */ int forLoop(int n) { int res = 0; // 循环求和 1, 2, ..., n-1, n for (int i = 1; i <= n; ++i) { res += i; } return res;0 码力 | 378 页 | 17.59 MB | 1 年前3
Hello 算法 1.0.0b1 C++版的字,一般我们会这样做: 1. 打开字典大致一半页数的位置,查看此页的首字母是什么(假设为 ? ); 2. 由于在英文字母表中 ? 在 ? 的后面,因此应排除字典前半部分,查找范围仅剩后半部分; 3. 循环执行步骤 1‑2 ,直到找到拼音首字母为 ? 的页码时终止。 1. 引言 hello‑algo.com 9 Figure 1‑1. 查字典步骤 查字典这个小学生的标配技能,实际上就是大名鼎鼎的 // 在某运行平台下 void algorithm(int n) { int a = 2; // 1 ns a = a + 1; // 1 ns a = a * 2; // 10 ns // 循环 n 次 for (int i = 0; i < n; i++) { // 1 ns ,每轮都要执行 i++ 2. 复杂度分析 hello‑algo.com 14 cout << 0 << endl; A 只有 1 个打印操作,算法运行时间不随着 ? 增大而增长。我们称此算法的时间复杂度为「常数阶」。 ‧ 算法 B 中的打印操作需要循环 ? 次,算法运行时间随着 ? 增大成线性增长。此算法的时间复杂度被称为 「线性阶」。 ‧ 算法 C 中的打印操作需要循环 1000000 次,但运行时间仍与输入数据大小 ? 无关。因此 C 的时间复杂 度和 A 相同,仍为「常数阶」。 // 算法 A 时间复杂度:常数阶0 码力 | 187 页 | 14.71 MB | 1 年前3
Hello 算法 1.2.0 简体中文 C++ 版1. 将扑克牌划分为“有序”和“无序”两部分,并假设初始状态下最左 1 张扑克牌已经有序。 2. 在无序部分抽出一张扑克牌,插入至有序部分的正确位置;完成后最左 2 张扑克已经有序。 3. 不断循环步骤 2. ,每一轮将一张扑克牌从无序部分插入至有序部分,直至所有扑克牌都有序。 图 1‑2 扑克排序步骤 上述整理扑克牌的方法本质上是“插入排序”算法,它在处理小型数据集时非常高效。许多编程语言的排序 迭代(iteration)是一种重复执行某个任务的控制结构。在迭代中,程序会在满足一定的条件下重复执行某段 代码,直到这个条件不再满足。 1. for 循环 for 循环是最常见的迭代形式之一,适合在预先知道迭代次数时使用。 以下函数基于 for 循环实现了求和 1 + 2 + ⋯ + ? ,求和结果使用变量 res 记录。需要注意的是,Python 中 range(a, b) 对应的区间是“左闭右开”的,对应的遍历范围为 对应的区间是“左闭右开”的,对应的遍历范围为 ?, ? + 1, … , ? − 1 : // === File: iteration.cpp === /* for 循环 */ int forLoop(int n) { int res = 0; // 循环求和 1, 2, ..., n-1, n for (int i = 1; i <= n; ++i) { res += i; } return res;0 码力 | 379 页 | 18.48 MB | 10 月前3
Hello 算法 1.0.0b2 C++版的字,一般我们会这样做: 1. 打开字典大致一半页数的位置,查看此页的首字母是什么(假设为 ? ); 2. 由于在英文字母表中 ? 在 ? 的后面,因此应排除字典前半部分,查找范围仅剩后半部分; 3. 循环执行步骤 1‑2 ,直到找到拼音首字母为 ? 的页码时终止。 1. 引言 hello‑algo.com 9 Figure 1‑1. 查字典步骤 查字典这个小学生的标配技能,实际上就是大名鼎鼎的 // 在某运行平台下 void algorithm(int n) { int a = 2; // 1 ns a = a + 1; // 1 ns a = a * 2; // 10 ns // 循环 n 次 for (int i = 0; i < n; i++) { // 1 ns ,每轮都要执行 i++ 2. 复杂度分析 hello‑algo.com 14 cout << 0 << endl; A 只有 1 个打印操作,算法运行时间不随着 ? 增大而增长。我们称此算法的时间复杂度为「常数阶」。 ‧ 算法 B 中的打印操作需要循环 ? 次,算法运行时间随着 ? 增大成线性增长。此算法的时间复杂度被称为 「线性阶」。 ‧ 算法 C 中的打印操作需要循环 1000000 次,但运行时间仍与输入数据大小 ? 无关。因此 C 的时间复杂 度和 A 相同,仍为「常数阶」。 // 算法 A 时间复杂度:常数阶0 码力 | 197 页 | 15.72 MB | 1 年前3
Hello 算法 1.0.0b4 C++版2. 在无序区间抽出一张扑克牌,插入至有序区间的正确位置;完成后最左 2 张扑克已经有序。 3. 在无序区间抽出一张扑克牌,插入至有序区间的正确位置;完成后最左 3 张扑克已经有序。 4. 不断循环以上操作,直至所有扑克牌都有序后终止。 以上整理扑克牌的方法本质上就是「插入排序」算法,它在处理小型数据集时非常高效。许多编程语言的排 序库函数中都存在插入排序的身影。 Figure 1‑2. // 在某运行平台下 void algorithm(int n) { int a = 2; // 1 ns a = a + 1; // 1 ns a = a * 2; // 10 ns // 循环 n 次 for (int i = 0; i < n; i++) { // 1 ns ,每轮都要执行 i++ cout << 0 << endl; // 5 ns } } 2. 复杂度 hello‑algo 只有 1 个打印操作,算法运行时间不随着 ? 增大而增长。我们称此算法的时间复杂度为「常数 阶」。 ‧ 算法 B 中的打印操作需要循环 ? 次,算法运行时间随着 ? 增大呈线性增长。此算法的时间复杂度被称 为「线性阶」。 ‧ 算法 C 中的打印操作需要循环 1000000 次,但运行时间仍与输入数据大小 ? 无关。因此 C 的时间复杂 度和 A 相同,仍为「常数阶」。 // 算法 A 时间复杂度:常数阶0 码力 | 343 页 | 27.39 MB | 1 年前3
C++高性能并行编程与优化 - 课件 - 04 从汇编角度看编译器优化movups 变成了 movaps 对齐的读写可能 带来微乎其微的 性能提升…… 数组求和: reduction 的优化 你看懂了吗?没关系!小彭老师也没看 懂!总之非常高效就对了! 第 5 章:循环 循环中的矢量化:还在伺候指针别名 我们可怜的编译器啊!他还在担心 a 和 b 指向的数组是否有重合。 考虑 func(a, a + 1) 的情况,那样会产生数据依赖链,没法 SIMD 化 。 为了优化而不失正确性,他索性生成两份代码: SIMD 版本高效运行。 2. 如果重叠,则跳转到标量版本低效运行,但至少不会错。 SIMD 版 标量版 循环中的矢量化:解决指针别名 所以,让我们加上 __restrict 关键字,打消编译器的顾虑! 这下只需要生成一个 SIMD 版本了,没有了运行时判断重叠的焦虑。 SIMD 版 循环中的矢量化: OpenMP 强制矢量化 除了可以用 __restrict 让编译器放心做 SIMD 优化外,还可以用 这个选项。 循环中的矢量化:编译器提示忽略指针别名 • 除了可以用 __restrict , #pragma omp simd 外,对于 GCC 编译器还可以用: • #pragma GCC ivdep • 表示忽视下方 for 循环内可能的指针别名现象 。 • 不同的编译器这个 pragma 指令不同,这里只 是拿 GCC 举例,其他编译器请自行查找资料 。 循环中的 if 语句:挪到外面来0 码力 | 108 页 | 9.47 MB | 1 年前3
C++高性能并行编程与优化 - 课件 - 08 CUDA 开启的 GPU 编程for 循环是串行的,我们可以把线 程数量调为 n ,然后用 threadIdx.x 作为 i 索引。这样就实现了,每个线程负责给数 组中一个元素的赋值。 小技巧:网格跨步循环( grid-stride loop ) • 无论调用者指定了多少个线程 ( blockDim ),都能自动根据给定的 n 区间循环,不会越界,也不会漏掉几个元 素。 • 这样一个 for 循环非常符合 ,如果超过就要提前退出,防止越界 。 网格跨步循环:应用于线程和板块一起上的情况 • 网格跨步循环实际上本来是这样,利用扁平 化的线程数量和线程编号实现动态大小。 • 同样,无论调用者指定每个板块多少线程 ( blockDim ),总共多少板块( gridDim )。 都能自动根据给定的 n 区间循环,不会越界 ,也不会漏掉几个元素。 • 这样一个 for 循环非常符合 CPU 上常见的 parallel 看右边,这就是为什么我们用于 x_host 那 个 for_each 的 lambda 没有修饰,而用于 x_dev 的那个 lambda 需要修饰 __device__ 。 for_each 用于整数的循环: counting_iterator • 可以用 thrust::make_counting_iterator(num) 构建一个计数迭代器,他作为区间表示的就是 整数的区间。 合并多个迭代器为一个:0 码力 | 142 页 | 13.52 MB | 1 年前3
共 24 条
- 1
- 2
- 3













