积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部后端开发(28)Java(28)

语言

全部中文(简体)(27)中文(繁体)(1)

格式

全部PDF文档 PDF(28)
 
本次搜索耗时 0.138 秒,为您找到相关结果约 28 个.
  • 全部
  • 后端开发
  • Java
  • 全部
  • 中文(简体)
  • 中文(繁体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Nacos架构&原理

    阿里云开发者“藏经阁” 海量电子手册免费下载 特别鸣谢: 目录 作者 6 推荐序 7 前⾔ 9 序言 9 简介 13 Nacos 简介 13 Nacos 架构 17 Nacos 总体设计 17 Nacos 架构 17 Nacos 配置模型 21 Nacos 内核设计 28 Nacos ⼀致性协议 28 Nacos 自研 Distro 协议 38 Nacos 通信通道 42 注册中心的设计原理 63 Nacos 注册中心服务数据模型 80 Nacos 健康检查机制 89 Nacos 配置管理模块 97 配置⼀致性模型 97 Nacos ⾼可⽤设计 100 Nacos 高可用设计 100 Nacos 鉴权插件 103 Nacos 账号权限体系 103 Nacos 认证机制 110 Nacos 前端设计 117 Nacos 前端设计 117 Nacos 性能报告 卿亮 许进 7 > 推荐序 推荐序 阿里巴巴合伙人 - 蒋江伟(小邪) 随着企业加速数字化升级,越来越多的系统架构采用了分布式的架构,主要目的是为了解决集中化 和互联网化所带来的架构扩展性和面对海量用户请求的技术挑战。这里面其中有⼀个关键点是软负 载。因为整个分布式架构需要有⼀个软负载来协作各个节点之间的服务在线离线状态、数据⼀致性、 以及动态配置数据的推送。这里面最简单的需求就是将⼀个配置准时的推送到不同的节点。即便如
    0 码力 | 326 页 | 12.83 MB | 10 月前
    3
  • pdf文档 Apache Shiro 1.2.x Reference Manual 中文翻译

    4 5 5.1 5.2 5.3 6 目錄 介紹 I. Overview 总览 1. Introduction 介绍 2. Tutorial 教程 3. Architecture 架构 4. Configuration 配置 II. Core 核心 5. Authentication 认证 6. Authorization 授权 6.1. Permissions 权限 用户帐号,而希望连接更为复 杂的用户数据源呢?” 解决这些问题需要更深入地了解 并理解Shiro 的架构和配置机制,我们将在下一节 Architecture 中介绍。 Apache Shiro 1.2.x Reference Manual 中文翻译 18 2. Tutorial 教程 3. Architecture 架构 Apache Shiro 设计理念是使程序的安全变得简单直观而易于实现,Shiro的核心设计参照大多 从它的设计中表现了这种理念,为了与软件开发者的直觉相配合,Apache Shiro 在几乎 所有程序中保留了直观和易用的特性。 High-Level Overview 高级概述 在概念层,Shiro 架构包含三个主要的理念:Subject,SecurityManager和 Realm。下面的图 展示了这些组件如何相互作用,我们将在下面依次对其进行描述。 Subject:就像我们在上一章示例中提到的那样,Subject
    0 码力 | 196 页 | 2.34 MB | 1 年前
    3
  • pdf文档 《Java 应用与开发》课程讲义 - 王晓东

    1 Java 多态 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 6.1 Java 虚拟机架构 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 6.2 JVM 内存模型 . . . . . . . . 线程安全 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 11.1 AWT 组件和容器层次架构 . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 11.2 组件定位参照系 . . . . . . . . . . . . . 306 页 1.3. JAVA 开发环境 � 1 � • JIT, Just-In-Time 传统解释器的解释执行是转换一条,运行完后就将其扔掉;JIT 会自动检测指令的运行情况,并将使用频率高(如循环运行)的指令解释后保存 下来,下次调用时就无需再解释(相当于局部的编译执行),显著提高了 Java 的 运行效率。 Java应用程序 Java API Java 虚拟机 操作系统(Windows
    0 码力 | 330 页 | 6.54 MB | 1 年前
    3
  • pdf文档 Hello 算法 1.2.0 繁体中文 Java 版

    的方法是找一臺計算機,執行這兩個演算法,並監控記錄它們的執行時間和記憶體佔用情況。這種評估方式 能夠反映真實情況,但也存在較大的侷限性。 一方面,難以排除測試環境的干擾因素。硬體配置會影響演算法的效能表現。比如一個演算法的並行度較高, 那麼它就更適合在多核 CPU 上執行,一個演算法的記憶體操作密集,那麼它在高效能記憶體上的表現就會 更好。也就是說,演算法在不同的機器上的測試結果可能是不一致的。這意味著我們需要在各種機器上進行 複雜度分析為我們提供了一把評估演算法效率的“標尺”,使我們可以衡量執行某個演算法所需的時間和空 間資源,對比不同演算法之間的效率。 複雜度是個數學概念,對於初學者可能比較抽象,學習難度相對較高。從這個角度看,複雜度分析可能不太 適合作為最先介紹的內容。然而,當我們討論某個資料結構或演算法的特點時,難以避免要分析其執行速度 和空間使用情況。 綜上所述,建議你在深入學習資料結構與演算法之 所不同。 表 2‑1 迭代與遞迴特點對比 第 2 章 複雜度分析 www.hello‑algo.com 27 迭代 遞迴 實現方 式 迴圈結構 函式呼叫自身 時間效 率 效率通常較高,無函式呼叫開銷 每次函式呼叫都會產生開銷 記憶體 使用 通常使用固定大小的記憶體空間 累積函式呼叫可能使用大量的堆疊幀空間 適用問 題 適用於簡單迴圈任務,程式碼直觀、可讀 性好 適
    0 码力 | 379 页 | 18.79 MB | 10 月前
    3
  • pdf文档 Apache Shiro参考手册中文版

    视图在所有应用程序环境下实现这些目标——从最简单的命令行应用程序到最大的企业应用,不强制依赖其 他第三方框架,容器,或应用服务器。当然,该项目的目标是尽可能地融入到这些环境,但它能够在任何环境下立 即可用。 Apache Shiro Features Apache Shiro 是一个拥有许多功能的综合性的程序安全框架。下面的图表展示了 Shiro 的重点,并且这个参考手册也 会与之类似的被组织起来: XML(Spring,JBoss,Guice 等等),YAML,JSON,Groovy Builder markup,以及更多配置被一起配置。INI 文件只是 Shiro 的“共性”格式,他 它允许任何环境下的配置,除非其他选项不可用。 shiro.ini 因此,我们将为这个简单的应用程序使用 INI 文件来配置 Shiro SecurityManager。首先,在 pom.xml 所在的同一目录 下创建 src/main/resources 应用程序),它获取的 Subject 是基于关联了当前线程或传入请求的用户数据的。 现在你拥有了一个 Subject,你能拿它来做什么? 如果你想在应用程序的当前会话中使事物对于用户可用,你可以获得他们的会话: Session 是一个 Shiro 的特定实例,它提供了大部分你经常与 HttpSessoins 使用的东西,除了一些额外的好处以及一 个巨大的区别:它不需要一个
    0 码力 | 92 页 | 1.16 MB | 1 年前
    3
  • pdf文档 Hello 算法 1.0.0 Java版

    “计算操作运行时间统计”简化为“计算操作数量统计”,这样一来估算难度就大大降低了。 ‧ 时间复杂度也存在一定的局限性。例如,尽管算法 A 和 C 的时间复杂度相同,但实际运行时间差别很 大。同样,尽管算法 B 的时间复杂度比 C 高,但在输入数据大小 ? 较小时,算法 B 明显优于算法 C 。在 这些情况下,我们很难仅凭时间复杂度判断算法效率的高低。当然,尽管存在上述问题,复杂度分析仍 然是评判算法效率最有效且常用的方法。 (?2) ?3 + 10000?2 ?(?3) 2? + 10000?10000 ?(2?) 2.3.4 常见类型 设输入数据大小为 ? ,常见的时间复杂度类型如图 2‑9 所示(按照从低到高的顺序排列)。 ?(1) < ?(log ?) < ?(?) < ?(? log ?) < ?(?2) < ?(2?) < ?(?!) 常数阶 < 对数阶 < 线性阶 < 线性对数阶 < 平方阶 < recur() 在运行过程中会同时存在 ? 个未返回的 recur() ,从而占用 ?(?) 的栈帧空间。 2.4.3 常见类型 设输入数据大小为 ? ,图 2‑16 展示了常见的空间复杂度类型(从低到高排列)。 ?(1) < ?(log ?) < ?(?) < ?(?2) < ?(2?) 常数阶 < 对数阶 < 线性阶 < 平方阶 < 指数阶 图 2‑16 常见的空间复杂度类型 1. 常数阶
    0 码力 | 376 页 | 17.59 MB | 1 年前
    3
  • pdf文档 Hello 算法 1.1.0 Java版

    “计算操作运行时间统计”简化为“计算操作数量统计”,这样一来估算难度就大大降低了。 ‧ 时间复杂度也存在一定的局限性。例如,尽管算法 A 和 C 的时间复杂度相同,但实际运行时间差别很 大。同样,尽管算法 B 的时间复杂度比 C 高,但在输入数据大小 ? 较小时,算法 B 明显优于算法 C 。在 这些情况下,我们很难仅凭时间复杂度判断算法效率的高低。当然,尽管存在上述问题,复杂度分析仍 然是评判算法效率最有效且常用的方法。 (?2) ?3 + 10000?2 ?(?3) 2? + 10000?10000 ?(2?) 2.3.4 常见类型 设输入数据大小为 ? ,常见的时间复杂度类型如图 2‑9 所示(按照从低到高的顺序排列)。 ?(1) < ?(log ?) < ?(?) < ?(? log ?) < ?(?2) < ?(2?) < ?(?!) 常数阶 < 对数阶 < 线性阶 < 线性对数阶 < 平方阶 < recur() 在运行过程中会同时存在 ? 个未返回的 recur() ,从而占用 ?(?) 的栈帧空间。 2.4.3 常见类型 设输入数据大小为 ? ,图 2‑16 展示了常见的空间复杂度类型(从低到高排列)。 ?(1) < ?(log ?) < ?(?) < ?(?2) < ?(2?) 常数阶 < 对数阶 < 线性阶 < 平方阶 < 指数阶 图 2‑16 常见的空间复杂度类型 1. 常数阶
    0 码力 | 378 页 | 18.47 MB | 1 年前
    3
  • pdf文档 Hello 算法 1.2.0 简体中文 Java 版

    “计算操作运行时间统计”简化为“计算操作数量统计”,这样一来估算难度就大大降低了。 ‧ 时间复杂度也存在一定的局限性。例如,尽管算法 A 和 C 的时间复杂度相同,但实际运行时间差别很 大。同样,尽管算法 B 的时间复杂度比 C 高,但在输入数据大小 ? 较小时,算法 B 明显优于算法 C 。对 于此类情况,我们时常难以仅凭时间复杂度判断算法效率的高低。当然,尽管存在上述问题,复杂度分 析仍然是评判算法效率最有效且常用的方法。 (?2) ?3 + 10000?2 ?(?3) 2? + 10000?10000 ?(2?) 2.3.4 常见类型 设输入数据大小为 ? ,常见的时间复杂度类型如图 2‑9 所示(按照从低到高的顺序排列)。 ?(1) < ?(log ?) < ?(?) < ?(? log ?) < ?(?2) < ?(2?) < ?(?!) 常数阶 < 对数阶 < 线性阶 < 线性对数阶 < 平方阶 < recur() 在运行过程中会同时存在 ? 个未返回的 recur() ,从而占用 ?(?) 的栈帧空间。 2.4.3 常见类型 设输入数据大小为 ? ,图 2‑16 展示了常见的空间复杂度类型(从低到高排列)。 ?(1) < ?(log ?) < ?(?) < ?(?2) < ?(2?) 常数阶 < 对数阶 < 线性阶 < 平方阶 < 指数阶 图 2‑16 常见的空间复杂度类型 1. 常数阶
    0 码力 | 379 页 | 18.48 MB | 10 月前
    3
  • pdf文档 Hello 算法 1.0.0b5 Java版

    的数量的统计”,这样以来估算难度就大大降低了。 ‧ 时间复杂度也存在一定的局限性。例如,尽管算法 A 和 C 的时间复杂度相同,但实际运行时间差别很 大。同样,尽管算法 B 的时间复杂度比 C 高,但在输入数据大小 ? 较小时,算法 B 明显优于算法 C 。在 这些情况下,我们很难仅凭时间复杂度判断算法效率的高低。当然,尽管存在上述问题,复杂度分析仍 然是评判算法效率最有效且常用的方法。 (?2) ?3 + 10000?2 ?(?3) 2? + 10000?10000 ?(2?) 2.3.4 常见类型 设输入数据大小为 ? ,常见的时间复杂度类型如图 2‑9 所示(按照从低到高的顺序排列)。 ?(1) < ?(log ?) < ?(?) < ?(? log ?) < ?(?2) < ?(2?) < ?(?!) 常数阶 < 对数阶 < 线性阶 < 线性对数阶 < 平方阶 < n) { if (n == 1) return; return recur(n - 1); } 2.4.3 常见类型 设输入数据大小为 ? ,图 2‑16 展示了常见的空间复杂度类型(从低到高排列)。 ?(1) < ?(log ?) < ?(?) < ?(?2) < ?(2?) 常数阶 < 对数阶 < 线性阶 < 平方阶 < 指数阶 第 2 章 复杂度分析 hello‑algo.com
    0 码力 | 376 页 | 30.69 MB | 1 年前
    3
  • pdf文档 Hello 算法 1.0.0b4 Java版

    我们按照说明书一步步操作,就能组装出精美的积木模型。 1. 初识算法 hello‑algo.com 11 Figure 1‑5. 拼装积木 两者的详细对应关系如下表所示。 数据结构与算法 LEGO 乐高 输入数据 未拼装的积木 数据结构 积木组织形式,包括形状、大小、连接方式等 算法 把积木拼成目标形态的一系列操作步骤 输出数据 积木模型 值得注意的是,数据结构与算法独立于编程语言。正因如此,本书得以提供多种编程语言的实现。 而数据结构是计算机中组织和存储数据的 方式。 1. 初识算法 hello‑algo.com 12 ‧ 数据结构与算法紧密相连。数据结构是算法的基石,而算法则是发挥数据结构作用的舞台。 ‧ 乐高积木对应于数据,积木形状和连接方式代表数据结构,拼装积木的步骤则对应算法。 13 2. 复杂度 2.1. 算法效率评估 2.1.1. 算法评价维度 从总体上看,算法设计追求以下两个层面的目标: 的运行时间的统计”简化为“计算操作的数量的统计”,这样的简化方法大大降低了估算难度。 时间复杂度也存在一定的局限性。例如,尽管算法 A 和 C 的时间复杂度相同,但实际运行时间差别很大。同 样,尽管算法 B 的时间复杂度比 C 高,但在输入数据大小 ? 较小时,算法 B 明显优于算法 C 。在这些情况下, 我们很难仅凭时间复杂度判断算法效率高低。当然,尽管存在上述问题,复杂度分析仍然是评判算法效率最 有效且常用的方法。 2
    0 码力 | 342 页 | 27.39 MB | 1 年前
    3
共 28 条
  • 1
  • 2
  • 3
前往
页
相关搜索词
Nacos架构原理ApacheShiro1.2ReferenceManual中文翻译中文翻译lecturenotesforJavaApplicationandDevelopmentpdfHello算法繁体繁体中文参考手册参考手册文版中文版1.01.1简体简体中文0b50b4
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩