Apache Shiro 1.2.x Reference Manual 中文翻译
任何应用程序 Apache Shiro设计从一开始就支持任何应用程序——从最小的命令行应用程序最大的集群 web 应用程序。对于本教程,尽管我们创建一个简单的应用程序,你都知道运用相同的使用模 式来进行应用程序创建或部署。 本教程需要 Java 1.5 或更高版本。 我们还将使用 Apache Maven 作为我们的构建工具,当然 这对于 Apache Shiro 来说不是必须使用。你可能获得 我们将在以后详细讨论 SecurityManager,但当你和一个 Subject 互动时了解它 是很重要的。任何 Subject 的安全操作中 SecurityManager 是幕后真正的举重者,这在 上面的图表中可以反映出来。 Realms: Reamls 是 Shiro 和你的程序安全数据之间的“桥”或者“连接”,它用来实际和安 全相关的数据如用户执行身份认证(登录)的帐号和授权(访问控制)进行交互,Shiro 和其它内部组件一样,Shiro SecurityManager 管理如何使用 Realms获取 Subject 实例所代表的安全和身份信息。 Detailed Architecture 详细架构 下面的图表展示了 Shiro 的核心架构思想,下面有简单的解释。 Subject (org.apache.shiro.subject.Subject) 正在与软件交互的一个特定的实体“view”(用户、第三方服务、时钟守护任务等)。0 码力 | 196 页 | 2.34 MB | 1 年前3Apache Shiro参考手册中文版
的目标是尽可能地融入到这些环境,但它能够在任何环境下立 即可用。 Apache Shiro Features Apache Shiro 是一个拥有许多功能的综合性的程序安全框架。下面的图表展示了 Shiro 的重点,并且这个参考手册也 会与之类似的被组织起来: Shiro 把 Shiro 开发团队称为“应用程序的四大基石”——身份验证,授权,会话管理和加密作为其目标。 进制编码,但可以使用 Base64 编码代替 16 进制编码来配置(见下面)。 一旦你指定了文本密码散列值,你得告诉 Shiro 这些都是加密的。你可以通过配置在[main] section 中隐式地创建 iniRealm 来使用合适的 CredentialsMatcher 实现来对应到你所指定的哈希算法: 你可以像任何其他对象一样在 CredentialsMatcher 它将会遍历该集合,并对每一个支持提交 AuthenticationToken 的 Realm 调用 Realm 的 getAuthenticationInfo 方 法。 Implicit ordering(隐式排列) 当使用 Shiro 的 INI 配置文件格式时,你应该配置 Realm 处理 AuthenticationToken 的顺序,你想要的顺序。例 如,在 shiro.ini 中,Realm 将会以它们在0 码力 | 92 页 | 1.16 MB | 1 年前3Hello 算法 1.0.0b4 Java版
n; i++) { for (int j = 0; j < n + 1; j++) { System.out.println(0); } } } 第二步:判断渐近上界 时间复杂度由多项式 ?(?) 中最高阶的项来决定。这是因为在 ? 趋于无穷大时,最高阶的项将发挥主导作用, 其他项的影响都可以被忽略。 以下表格展示了一些例子,其中一些夸张的值是为了强调“系数无法撼动阶数”这一结论。当 C# 等)都不支持自动优化尾递归,因此一般来说空间复杂度是 ?(?) 。 � 函数和方法这两个术语的区别是什么? 函数(function)可以独立被执行,所有参数都以显式传递。方法(method)与一个对象关 联,方法被隐式传递给调用它的对象,方法能够对类的实例中包含的数据进行操作。 因此,C 和 Go 只有函数,Java 和 C# 只有方法,在 C++, Python 中取决于它是否属于一个类。 标准,32‑bit 长度的 float 由以下 部分构成: ‧ 符号位 S :占 1 bit 。 ‧ 指数位 E :占 8 bits 。 ‧ 分数位 N :占 24 bits ,其中 23 位显式存储。 设 32‑bit 二进制数的第 ? 位为 ?? ,则 float 值的计算方法定义为: val = (−1)?31 × 2(?30?29…?23)2−127 × (1.?22?21 … ?0)20 码力 | 342 页 | 27.39 MB | 1 年前3Hello 算法 1.1.0 Java版
return n + res; } 图 2‑3 展示了该函数的递归过程。 图 2‑3 求和函数的递归过程 虽然从计算角度看,迭代与递归可以得到相同的结果,但它们代表了两种完全不同的思考和解决问题的范 式。 ‧ 迭代:“自下而上”地解决问题。从最基础的步骤开始,然后不断重复或累加这些步骤,直到任务完成。 ‧ 递归:“自上而下”地解决问题。将原问题分解为更小的子问题,这些子问题和原问题具有相同的形式。 总结以上内容,如表 2‑1 所示,迭代和递归在实现、性能和适用性上有所不同。 表 2‑1 迭代与递归特点对比 第 2 章 复杂度分析 hello‑algo.com 27 迭代 递归 实现方 式 循环结构 函数调用自身 时间效 率 效率通常较高,无函数调用开销 每次函数调用都会产生开销 内存使 用 通常使用固定大小的内存空间 累积函数调用可能使用大量的栈帧空间 适用问 题 归:当函数完成执行并返回时,对应的栈帧会被从“调用栈”上移除,恢复之前函数的执行环境。 因此,我们可以使用一个显式的栈来模拟调用栈的行为,从而将递归转化为迭代形式: // === File: recursion.java === /* 使用迭代模拟递归 */ int forLoopRecur(int n) { // 使用一个显式的栈来模拟系统调用栈 Stackstack = new Stack<>(); 0 码力 | 378 页 | 18.47 MB | 1 年前3Hello 算法 1.0.0 Java版
return n + res; } 图 2‑3 展示了该函数的递归过程。 图 2‑3 求和函数的递归过程 虽然从计算角度看,迭代与递归可以得到相同的结果,但它们代表了两种完全不同的思考和解决问题的范 式。 ‧ 迭代:“自下而上”地解决问题。从最基础的步骤开始,然后不断重复或累加这些步骤,直到任务完成。 ‧ 递归:“自上而下”地解决问题。将原问题分解为更小的子问题,这些子问题和原问题具有相同的形式。 总结以上内容,如表 2‑1 所示,迭代和递归在实现、性能和适用性上有所不同。 表 2‑1 迭代与递归特点对比 第 2 章 复杂度分析 hello‑algo.com 27 迭代 递归 实现方 式 循环结构 函数调用自身 时间效 率 效率通常较高,无函数调用开销 每次函数调用都会产生开销 内存使 用 通常使用固定大小的内存空间 累积函数调用可能使用大量的栈帧空间 适用问 题 归:当函数完成执行并返回时,对应的栈帧会被从“调用栈”上移除,恢复之前函数的执行环境。 因此,我们可以使用一个显式的栈来模拟调用栈的行为,从而将递归转化为迭代形式: // === File: recursion.java === /* 使用迭代模拟递归 */ int forLoopRecur(int n) { // 使用一个显式的栈来模拟系统调用栈 Stackstack = new Stack<>(); 0 码力 | 376 页 | 17.59 MB | 1 年前3Hello 算法 1.0.0b5 Java版
return n + res; } 图 2‑3 展示了该函数的递归过程。 图 2‑3 求和函数的递归过程 虽然从计算角度看,迭代与递归可以得到相同的结果,但它们代表了两种完全不同的思考和解决问题的范 式。 ‧ 迭代:“自下而上”地解决问题。从最基础的步骤开始,然后不断重复或累加这些步骤,直到任务完成。 ‧ 递归:“自上而下”地解决问题。将原问题分解为更小的子问题,这些子问题和原问题具有相同的形式。 + 1) + (5? + 1) + 2 完整统计 (‑.‑|||) = 2?2 + 7? + 3 ?(?) = ?2 + ? 偷懒统计 (o.O) 2. 第二步:判断渐近上界 时间复杂度由多项式 ?(?) 中最高阶的项来决定。这是因为在 ? 趋于无穷大时,最高阶的项将发挥主导作用, 其他项的影响都可以被忽略。 第 2 章 复杂度分析 hello‑algo.com 30 表 2‑1 展示 Python、C++、Go、C# 等)都不支持自动优化尾递归,因此通常认为空间复杂度是 ?(?) 。 � 函数和方法这两个术语的区别是什么? 函数(function)可以被独立执行,所有参数都以显式传递。方法(method)与一个对象关 联,被隐式传递给调用它的对象,能够对类的实例中包含的数据进行操作。 下面以几个常见的编程语言来说明。 ‧ C 语言是过程式编程语言,没有面向对象的概念,所以只有函数。但我们可以通过创建0 码力 | 376 页 | 30.69 MB | 1 年前3Hello 算法 1.2.0 简体中文 Java 版
return n + res; } 图 2‑3 展示了该函数的递归过程。 图 2‑3 求和函数的递归过程 虽然从计算角度看,迭代与递归可以得到相同的结果,但它们代表了两种完全不同的思考和解决问题的范 式。 ‧ 迭代:“自下而上”地解决问题。从最基础的步骤开始,然后不断重复或累加这些步骤,直到任务完成。 ‧ 递归:“自上而下”地解决问题。将原问题分解为更小的子问题,这些子问题和原问题具有相同的形式。 总结以上内容,如表 2‑1 所示,迭代和递归在实现、性能和适用性上有所不同。 表 2‑1 迭代与递归特点对比 第 2 章 复杂度分析 www.hello‑algo.com 27 迭代 递归 实现方 式 循环结构 函数调用自身 时间效 率 效率通常较高,无函数调用开销 每次函数调用都会产生开销 内存使 用 通常使用固定大小的内存空间 累积函数调用可能使用大量的栈帧空间 适用问 题 归:当函数完成执行并返回时,对应的栈帧会被从“调用栈”上移除,恢复之前函数的执行环境。 因此,我们可以使用一个显式的栈来模拟调用栈的行为,从而将递归转化为迭代形式: // === File: recursion.java === /* 使用迭代模拟递归 */ int forLoopRecur(int n) { // 使用一个显式的栈来模拟系统调用栈 Stackstack = new Stack<>(); 0 码力 | 379 页 | 18.48 MB | 10 月前3Hello 算法 1.2.0 繁体中文 Java 版
本書部分放棄了程式語言的註釋規範,以換取更加緊湊的內容排版。註釋主要分為三種類型:標題註 釋、內容註釋、多行註釋。 第 0 章 前言 www.hello‑algo.com 5 /* 標題註釋,用於標註函式、類別、測試樣例等 */ // 內容註釋,用於詳解程式碼 /** * 多行 * 註釋 */ 0.2.2 在動畫圖解中高效學習 相較於文字,影片和圖片具有更高的資訊密度和結構化程度,更易於理解。在本書中,重點和難點知識將主 章 前言 www.hello‑algo.com 9 圖 0‑8 演算法學習路線 0.3 小結 ‧ 本書的主要受眾是演算法初學者。如果你已有一定基礎,本書能幫助你系統回顧演算法知識,書中源程 式碼也可作為“刷題工具庫”使用。 ‧ 書中內容主要包括複雜度分析、資料結構和演算法三部分,涵蓋了該領域的大部分主題。 ‧ 對於演算法新手,在初學階段閱讀一本入門書至關重要,可以少走許多彎路。 ‧ ,每一輪將一張撲克牌從無序部分插入至有序部分,直至所有撲克牌都有序。 圖 1‑2 撲克排序步驟 上述整理撲克牌的方法本質上是“插入排序”演算法,它在處理小型資料集時非常高效。許多程式語言的排 序庫函式中都有插入排序的身影。 例三:貨幣找零。假設我們在超市購買了 69 元的商品,給了收銀員 100 元,則收銀員需要找我們 31 元。他 會很自然地完成如圖 1‑3 所示的思考。 1. 可選項是比0 码力 | 379 页 | 18.79 MB | 10 月前3Nacos架构&原理
许进 7 > 推荐序 推荐序 阿里巴巴合伙人 - 蒋江伟(小邪) 随着企业加速数字化升级,越来越多的系统架构采用了分布式的架构,主要目的是为了解决集中化 和互联网化所带来的架构扩展性和面对海量用户请求的技术挑战。这里面其中有⼀个关键点是软负 载。因为整个分布式架构需要有⼀个软负载来协作各个节点之间的服务在线离线状态、数据⼀致性、 以及动态配置数据的推送。这里面最简单的需求就是将⼀个配置准时的推送到不同的节点。即便如 杂。如何能将数据准确的在 3 秒钟之内推送到每⼀ 个计算节点,这是当时提出的⼀个要求,围绕这个要求,系统要做大量的研发和改造,类似的这种 关键的技术挑战点还非常非常的多。本书就是将面对复杂的分布式计算场景,海量并发的业务场景, 对软负载⼀个系统的进行阐述,通过 Nacos 开源分享阿里软负载最佳实践,希望能够帮助到各位开 发者,各位系统架构师,少走弯路。 阿里巴巴云原生应用平台负责人 - 年开源后引起了开发者的广泛关注和大量使用。本书也将介绍 Nacos 偏 AP 分布式系统的设计、全异步事件驱动的高性能架构和面向失败设计的高可用设计理念 等。相信开发者阅读后不仅可以更深入了解 Nacos,也有助于提高分布式系统的设计研发能力。 阿里巴巴中间件负责人 - 胡伟琪(白慕) 阿里巴巴在 10 多年分布式应用架构实践过程中,产出了⼀大批非常优秀的中间件技术产品,其中软 负载领域的0 码力 | 326 页 | 12.83 MB | 9 月前3《Java 应用与开发》课程讲义 - 王晓东
具备以下技术特点: 面向对象 Java 是一种以对象为中心,以消息为驱动的面向对象的编程语言。 平台无关性 分为源代码级(需重新编译源代码,如 C/C++)和目标代码级 (Java) 平台 无关。 分布式 可支持分布式技术及平台开发。 可靠性 不支持直接操作指针,避免了对内存的非法访问;自动单元回收功能防止内存 丢失等动态内存分配导致的问题;解释器运行时实施检查,可发现数组和字符串 访问的越界;提供了异常处理机制。 和代码库。 Java JDK JRE Java1 Java1.1 Java1.2 Java2 J2SE J2ME J2EE 标准版,开发适用于PC上运行的程序 微缩版,开发适用于手机等嵌入式设备的程序 企业版,开发适用于服务器端的程序 引入内部类和即时编译(Just-In-Time,JIT)技术 引入Swing 2000.5 2002.2 2004.10 2006.11 J2SE1 转换从“短”到“长”的优先关系为: byte → short → char → int → long → float → double 如果要将较长的数据转换成较短的数据时(不安全)就要进行强制类型转换,格 式如下: 1 (预转换的数据类型) 变量名; 字符串型数据与数值型数据相互转换 示例代码:字符串数据转换为数值型数据示例 1 String myNumber = ”1234.56”; 2 float0 码力 | 330 页 | 6.54 MB | 1 年前3
共 29 条
- 1
- 2
- 3