PostgreSQL 查询优化器解析0 码力 | 37 页 | 851.23 KB | 1 年前3
Greenplum资源管理器2017 年象行中国(杭州 站)第一期 Greenplum资源管理器 姚珂男/Pivotal kyao@pivotal.io 2017 年象行中国(杭州 站)第一期 Agenda • Greenplum数据库 • Resource Queue • Resource Group 2017 年象行中国(杭州 站)第一期 Greenplum数据库 • 基于PostgreSQL • 分布式 corruption => PANIC 2017 年象行中国(杭州 站)第一期 Resource Queue • Cost is tricky – 没有明确的定义 – 不同优化器不一致 – 优化器不能被纳入资源管理器 2017 年象行中国(杭州 站)第一期 Resource Queue • Priority is rough – 不能精确控制CPU – CHECK_FOR_INTERRUPTS0 码力 | 21 页 | 756.29 KB | 1 年前3
Apache ShardingSphere 中文文档 5.4.1其他异常 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 414 9.4.2 服务器错误码 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 414 10 开发者手册 415 10.1 运行模式 Apache ShardingSphere document 2.3.1 L1 内核层 是数据库基本能力的抽象,其所有组件均必须存在,但具体实现方式可通过可插拔的方式更换。主要包 括查询优化器、分布式事务引擎、分布式执行引擎、权限引擎和调度引擎等。 2.3.2 L2 功能层 用于提供增量能力,其所有组件均是可选的,可以包含零至多个组件。组件之间完全隔离,互无感知,多 组件可通过叠加的 功能可完全面向 Apache ShardingSphere 定义的顶层接口进行定制化扩展,而无需改动内核代码。 2.3.3 L3 生态层 用于对接和融入现有数据库生态,包括数据库协议、SQL 解析器和存储适配器,分别对应于 Apache Shard‐ ingSphere 以数据库协议提供服务的方式、SQL 方言操作数据的方式以及对接存储节点的数据库类型。 2.3. 可插拔:构建数据库功能生态0 码力 | 530 页 | 4.49 MB | 1 年前3
Apache ShardingSphere 中文文档 5.3.2其他异常 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 394 9.4.2 服务器错误码 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 394 10 开发者手册 395 10.1 运行模式 Apache ShardingSphere document 2.3.1 L1 内核层 是数据库基本能力的抽象,其所有组件均必须存在,但具体实现方式可通过可插拔的方式更换。主要包 括查询优化器、分布式事务引擎、分布式执行引擎、权限引擎和调度引擎等。 2.3.2 L2 功能层 用于提供增量能力,其所有组件均是可选的,可以包含零至多个组件。组件之间完全隔离,互无感知,多 组件可通过叠加的 功能可完全面向 Apache ShardingSphere 定义的顶层接口进行定制化扩展,而无需改动内核代码。 2.3.3 L3 生态层 用于对接和融入现有数据库生态,包括数据库协议、SQL 解析器和存储适配器,分别对应于 Apache Shard‐ ingSphere 以数据库协议提供服务的方式、SQL 方言操作数据的方式以及对接存储节点的数据库类型。 2.3. 可插拔:构建数据库功能生态0 码力 | 508 页 | 4.44 MB | 1 年前3
Apache ShardingSphere v5.5.0 中文文档其他异常 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 440 9.4.2 服务器错误码 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 440 10 开发者手册 441 10.1 运行模式 Apache ShardingSphere document 2.3.1 L1 内核层 是数据库基本能力的抽象,其所有组件均必须存在,但具体实现方式可通过可插拔的方式更换。主要包 括查询优化器、分布式事务引擎、分布式执行引擎、权限引擎和调度引擎等。 2.3.2 L2 功能层 用于提供增量能力,其所有组件均是可选的,可以包含零至多个组件。组件之间完全隔离,互无感知,多 组件可通过叠加的 功能可完全面向 Apache ShardingSphere 定义的顶层接口进行定制化扩展,而无需改动内核代码。 2.3.3 L3 生态层 用于对接和融入现有数据库生态,包括数据库协议、SQL 解析器和存储适配器,分别对应于 Apache Shard‐ ingSphere 以数据库协议提供服务的方式、SQL 方言操作数据的方式以及对接存储节点的数据库类型。 2.3. 可插拔:构建数据库功能生态0 码力 | 557 页 | 4.61 MB | 1 年前3
Apache ShardingSphere 中文文档 5.0.0-alpha. 21 SQL 解析 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 执行器优化 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 SQL 路由 . . . . . 公布的分布式主键生成算法,它能够保证不同进程主键的不重复性,以及相同进程 主键的有序性。 实现原理 在同一个进程中,它首先是通过时间位保证不重复,如果时间相同则是通过序列位保证。同时由于时间 位是单调递增的,且各个服务器如果大体做了时间同步,那么生成的主键在分布式环境可以认为是总体 有序的,这就保证了对索引字段的插入的高效性。例如 MySQL 的 Innodb 存储引擎的主键。 使用雪花算法生成的主键,二进制表示形式包含 么生成器会等待到下个毫秒继续生成。 雪花算法主键的详细结构见下图。 3.1. 数据分片 19 Apache ShardingSphere document, v5.0.0-beta 时钟回拨 服务器时钟回拨会导致产生重复序列,因此默认分布式主键生成器提供了一个最大容忍的时钟回拨毫秒 数。如果时钟回拨的时间超过最大容忍的毫秒数阈值,则程序报错;如果在可容忍的范围内,默认分布 式主键生成器会等待0 码力 | 301 页 | 3.44 MB | 1 年前3
Apache ShardingSphere 中文文档 5.0.0的可插拔架构划分为 3 层,它们是:L1 内核层、L2 功能层、L3 生态层。 L1 内核层 是数据库基本能力的抽象,其所有组件均必须存在,但具体实现方式可通过可插拔的方式更换。主要包 括查询优化器、分布式事务引擎、分布式执行引擎、权限引擎和调度引擎等。 L2 功能层 用于提供增量能力,其所有组件均是可选的,可以包含零至多个组件。组件之间完全隔离,互无感知,多 组件可通过叠加的方式相互配合 等。用户自定义功能可完全面向 Apache ShardingSphere 定义的顶层接口进行定制化扩展,而无需改动 内核代码。 L3 生态层 用于对接和融入现有数据库生态,包括数据库协议、SQL 解析器和存储适配器,分别对应于 Apache Shard‐ ingSphere 以数据库协议提供服务的方式、SQL 方言操作数据的方式以及对接存储节点的数据库类型。 3.4. 可插拔架构 16 4 功能 公布的分布式主键生成算法,它能够保证不同进程主键的不重复性,以及相同进程 主键的有序性。 实现原理 在同一个进程中,它首先是通过时间位保证不重复,如果时间相同则是通过序列位保证。同时由于时间 位是单调递增的,且各个服务器如果大体做了时间同步,那么生成的主键在分布式环境可以认为是总体 有序的,这就保证了对索引字段的插入的高效性。例如 MySQL 的 Innodb 存储引擎的主键。 使用雪花算法生成的主键,二进制表示形式包含0 码力 | 385 页 | 4.26 MB | 1 年前3
Apache ShardingSphere 中文文档 5.1.1的可插拔架构划分为 3 层,它们是:L1 内核层、L2 功能层、L3 生态层。 L1 内核层 是数据库基本能力的抽象,其所有组件均必须存在,但具体实现方式可通过可插拔的方式更换。主要包 括查询优化器、分布式事务引擎、分布式执行引擎、权限引擎和调度引擎等。 3.4. 可插拔架构 16 Apache ShardingSphere document, v5.1.1 L2 功能层 用于提供增量能 等。用户自定义功能可完全面向 Apache ShardingSphere 定义的顶层接口进行定制化扩展,而无需改动 内核代码。 L3 生态层 用于对接和融入现有数据库生态,包括数据库协议、SQL 解析器和存储适配器,分别对应于 Apache Shard‐ ingSphere 以数据库协议提供服务的方式、SQL 方言操作数据的方式以及对接存储节点的数据库类型。 3.4. 可插拔架构 17 4 功能 公布的分布式主键生成算法,它能够保证不同进程主键的不重复性,以及相同进程 主键的有序性。 实现原理 在同一个进程中,它首先是通过时间位保证不重复,如果时间相同则是通过序列位保证。同时由于时间 位是单调递增的,且各个服务器如果大体做了时间同步,那么生成的主键在分布式环境可以认为是总体 有序的,这就保证了对索引字段的插入的高效性。例如 MySQL 的 Innodb 存储引擎的主键。 使用雪花算法生成的主键,二进制表示形式包含0 码力 | 409 页 | 4.47 MB | 1 年前3
Apache ShardingSphere 中文文档 5.1.0的可插拔架构划分为 3 层,它们是:L1 内核层、L2 功能层、L3 生态层。 L1 内核层 是数据库基本能力的抽象,其所有组件均必须存在,但具体实现方式可通过可插拔的方式更换。主要包 括查询优化器、分布式事务引擎、分布式执行引擎、权限引擎和调度引擎等。 3.4. 可插拔架构 16 Apache ShardingSphere document, v5.1.0 L2 功能层 用于提供增量能 等。用户自定义功能可完全面向 Apache ShardingSphere 定义的顶层接口进行定制化扩展,而无需改动 内核代码。 L3 生态层 用于对接和融入现有数据库生态,包括数据库协议、SQL 解析器和存储适配器,分别对应于 Apache Shard‐ ingSphere 以数据库协议提供服务的方式、SQL 方言操作数据的方式以及对接存储节点的数据库类型。 3.4. 可插拔架构 17 4 功能 公布的分布式主键生成算法,它能够保证不同进程主键的不重复性,以及相同进程 主键的有序性。 实现原理 在同一个进程中,它首先是通过时间位保证不重复,如果时间相同则是通过序列位保证。同时由于时间 位是单调递增的,且各个服务器如果大体做了时间同步,那么生成的主键在分布式环境可以认为是总体 有序的,这就保证了对索引字段的插入的高效性。例如 MySQL 的 Innodb 存储引擎的主键。 使用雪花算法生成的主键,二进制表示形式包含0 码力 | 406 页 | 4.40 MB | 1 年前3
Apache ShardingSphere 中文文档 5.2.01 SQL 错误码 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269 4.4.2 服务器错误码 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271 5 开发者手册 272 5.1 运行模式 的可插拔架构划分为 3 层,它们是:L1 内核层、L2 功能层、L3 生态层。 L1 内核层 是数据库基本能力的抽象,其所有组件均必须存在,但具体实现方式可通过可插拔的方式更换。主要包 括查询优化器、分布式事务引擎、分布式执行引擎、权限引擎和调度引擎等。 L2 功能层 用于提供增量能力,其所有组件均是可选的,可以包含零至多个组件。组件之间完全隔离,互无感知,多 组件可通过叠加的方式相互配合 内核代码。 1.2. 设计哲学 5 Apache ShardingSphere document, v5.2.0 L3 生态层 用于对接和融入现有数据库生态,包括数据库协议、SQL 解析器和存储适配器,分别对应于 Apache Shard‐ ingSphere 以数据库协议提供服务的方式、SQL 方言操作数据的方式以及对接存储节点的数据库类型。 1.3 部署形态 1.3.1 部署形态0 码力 | 449 页 | 5.85 MB | 1 年前3
共 111 条
- 1
- 2
- 3
- 4
- 5
- 6
- 12













