积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部数据库(92)数据库中间件(19)TiDB(19)Greenplum(15)PieCloudDB(15)Apache Doris(4)ClickHouse(4)MySQL(3)PostgreSQL(3)Redis(3)

语言

全部中文(简体)(85)英语(2)

格式

全部PDF文档 PDF(92)
 
本次搜索耗时 0.198 秒,为您找到相关结果约 92 个.
  • 全部
  • 数据库
  • 数据库中间件
  • TiDB
  • Greenplum
  • PieCloudDB
  • Apache Doris
  • ClickHouse
  • MySQL
  • PostgreSQL
  • Redis
  • 全部
  • 中文(简体)
  • 英语
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 兼容龙蜥的云原生大模型数据计算系统:πDataCS

    --πDataCS简介 兼容龙蜥的云原生大模型数据计算系统 拓数派产品市场总监 吴疆 吴疆 深耕云计算和数据库行业十余年 拓数派(Openpie)产品市场总监 毕业于清华大学计算机系,先后在IBM,EMC, Pivotal,VMWare参与多个云平台和数据库项目 01 拓数派简介 πDataCS简介 02 πDataCS与龙晰 03 01. 拓数派简介 海 外 研 发 独创的云原生数据库旗舰产品以及之上的算法和数学模型,建立下一代云原生数据平台的前沿标准, 驱动企业实现从"软件公司"到"数据公司"再到"数学公司"的持续进阶。 拓数派旗下大模型数据计算系统(PieDataComputing System,缩写πDataCS),以云原生技术 重构数据存储和计算,一份存储,多引擎数据计算,全面升级大数据系统至大模型时代,使得自主可 控的大模型数据计算系统保持全球领先,成为A 与东吴证券在数仓虚拟化和信创领域展开试点合作 12月 创始人冯雷再度荣登数字商业周刊“年度智造中国商业领袖” 4月 冯雷被评为杭州市所有的独角兽和准独角兽企业 中唯一“年度创业人物” 打造大模型时代 立身中国的世界级团队 首家以虚拟数仓通过信通院/可信AP数据库评测 7月 拓数派数据计算引擎PieCloudDB虚拟数仓再获信创认可 8月 拓数派入选中国信通院“铸基计划”「高质量数字
    0 码力 | 29 页 | 7.46 MB | 1 年前
    3
  • pdf文档 大模型时代下向量数据库的设计与应用

    大模型时代下向量数据库的设计与应用 个人简介 目前在拓数派负责向量数据库PieCloudVector产品,聚焦于大模型 与大数据领域。拥有多年数据库内核研发和配套解决方案架构经验, 在加入拓数派前曾就职于开源大数据平台Greenplum团队,担任外部 数据源访问框架,对象存储访问扩展,ETL工具等产品模块的研发, 并曾参与PostgreSQL多个版本的代码贡献,拥有丰富的存储模块核心 开发和性能优化等实践经验。 邱培峰 拓数派向量数据库负责人 拓数派:大模型数据计算系统先行者 • 拓数派( OpenPie)是立足于国内的基础数据计算领域高科技 创新机构; • 拥有强大的数据库内核研发团队、数据科学团队和数字化转型团 队; • 国内虚拟数仓和eMPP技术提出者,不断在数据计算引擎方向进 行创新,全面拥抱AI技术趋势。 目录 • 大模型应用和RAG • 向量近似搜索和向量数据库 • • PieCloudVector架构设计与挑战 • 案例介绍 大模型 检索增强生成(RAG) 使用大模型可以构造问答,聊天等应用,但同时也存在以下问题 • 数据时效 - LLM训练数据有截止日期,不包含最新信息,无法准确回答相关信息 • 私域数据 - LLM训练数据多来源于公开渠道,无法接触到私域数据,对特定领域的生成任务质量不高。 • 长期记忆 - LLM本身却没有长期记忆能力,对长时间交互的上下文
    0 码力 | 28 页 | 1.69 MB | 1 年前
    3
  • pdf文档 SelectDB案例 从 ClickHouse 到 Apache Doris

    2023/02/20SelectDB 用户案例 导读:腾讯音乐内容库数据平台旨在为应用层提供库存盘点、分群画像、指标分析、标签圈 选等内容分析服务,高效为业务赋能。目前,内容库数据平台的数据架构已经从 1.0 演进到 了 4.0 ,经历了分析引擎从 ClickHouse 到 Apache Doris 的替换、经历了数据架构语义层 的初步引入到深度应用,有效提高了数据时效性、降低了运维成本、解决了数据管理割裂等 在业务运营过程中我们需要对包括歌曲、词曲、专辑、艺人在内的内容对象进行全方位分析, 高效为业务赋能,内容库数据平台旨在集成各数据源的数据,整合形成内容数据资产(以指 标和标签体系为载体),为应用层提供库存盘点、分群画像、指标分析、标签圈选等内容分 析服务。 数据架构演进 TDW 是腾讯最大的离线数据处理平台,公司内大多数业务的产品报表、运营分析、数据挖 掘等的存储和计算都是在 TDW 的替换、经历了数据架构语义层的初步引 入到深度应用,有效提高了数据时效性、降低了运维成本、解决了数据管理割裂等问题,收 益显著。接下来将为大家分享腾讯音乐内容库数据平台的数据架构演进历程与实践思考。 数据架构 1.0 2 如图所示为数据架构 1.0 架构图,分为数仓层、加速层、应用层三部分,数据架构 1.0 是 一个相对主流的架构,简单介绍一下各层的作用及工作原理:  数仓层:通过 ODS-DWD-DWS
    0 码力 | 12 页 | 1.55 MB | 1 年前
    3
  • pdf文档 πDataCS赋能工业软件创新与实践

    与东吴证券在数仓虚拟化和信创领域展开试点合作 12月 创始⼈冯雷再度荣登数字商业周刊“年度智造中国商业领袖” 4月 冯雷被评为杭州市所有的独角兽和准独角兽企 业中唯⼀“年度创业⼈物” 打造⼤模型时代 立身中国的世界级团队 首家以虚拟数仓通过信通院/可信AP数据库评测 7月 拓数派数据计算引擎PieCloudDB虚拟数仓再获信创认可 8月 拓数派⼊选中国信通院“铸基计划”「⾼质量数字化 2023拓数派年度技术论坛 拓数派⼤模型数据计算系统正式亮相,让AI模型更⼤更快 @2024 OpenPie. All rights reserved. OpenPie Confidential πDataCS的产品理念及定位 数据 计算 模型 灵活扩展的数据引擎,支持关系型数据库SQL、Spark/Flink 等流批⼀体处理、LLM的向量数据库以及GIS地理数据库等。 1 2 3 ⼤模型数据计算系统 ⼤模型数据计算系统,以云原⽣技术重构数据存储和计算,⼀份数据,多引擎数据计算,AI数学模型、数据和 计算三者互为增强,全面升级⼤数据系统⾄⼤模型时代 ,赋能⾏业AI场景应用。 具备整体数据平台⽅案,支持多模数据处理(结构化、半结构化 以及非结构化数据),实现数据共享和分析。 软件优化 + 新硬件(FPGA)加速,实现数据全链路的性能飞跃, 让数据存储、SQL查询、向量计算以及机器学习等能⼒全面升级。 @2024
    0 码力 | 36 页 | 4.25 MB | 1 年前
    3
  • pdf文档 Apache Doris 在美团外卖数仓中的应用实践

    此希望通过我们的业务实践与思考为大家提供一些经验参考。美团外卖数仓技术团队致力于将数 据应用效率最大化,同时兼顾研发、生产与运维成本的最小化,建设持续进步的数仓能力,也欢 迎大家多给我们提出建议。 数仓交互层引擎的应用现状 目前,互联网业务规模变得越来越大,不论是业务生产系统还是日志系统,基本上都是基于Hado op/Spark分布式大数据技术生态来构建数据仓库,然后对数据进行适当的分层、加工、管理。而 量业务,预设维度分析场景下表现良好,但在变化维的场景下生产成本巨大。例如,如果使用最 新商家类型回溯商家近三个月的表现,需要重新计算三个月的Cube,需花费几个小时,来计算近 TB的历史数据。另外,应对非预设维度分析,MOLAP模型需要重新进行适配计算,也需要一定的 迭代工作。 明细数据的交互 业务分析除了宏观数据之外,对明细数据查询也是一种刚需。通常大家会选择MySQL等关系型DB 作为明细数据的快速检索查询,但当业务成 iteblog.com 下图是MOLAP模式与ROLAP模式下应用方案的比较: MOLAP模式的劣势 1. 应用层模型复杂,根据业务需要以及Kylin生产需要,还要做较多模型预处理。这样在不同 的业务场景中,模型的利用率也比较低。 2. Kylin配置过程繁琐,需要配置模型设计,并配合适当的“剪枝”策略,以实现计算成本与查 询效率的平衡。 3. 由于MOLAP不支持明细数据的查询,在“
    0 码力 | 8 页 | 429.42 KB | 1 年前
    3
  • pdf文档 云原生虚拟数仓PieCloudDB Database产品白皮书

    撑更大模型所需的数据和计算。 PieCloudDB 为企业构建「坚如磐石」的虚拟数仓,以云资源最优化配置实现无限数据计算可能,基于新一代数仓虚 拟化,提供云数仓智能化解决方案,助力企业建立以数据资产为核心的竞争壁垒。 7 PieCloudDB 产品架构 PieCloudDB 整体架构分为三个层次,包括基础设施层、数据处理层及数据应用层。详细阐述如下: 基础设施层 基础设施层为 基础设施层为 PieCloudDB 提供计算资源、存储资源和网络资源,PieCloudDB 支持部署在物理服务器、虚拟机以及容 器中,同时也提供 PieCloudDB 公有云 SaaS 服务。 数据处理层 PieCloudDB 核心服务层,提供了并行数据处理能力,拥有元数据节点、计算节点、存储节点以及云原生管控平台节 点等共四种角色,具体说明如下: 1. 元数据节点: PieCloudDB 集群管控节点,提供数据洞察和集群运维等功能,支持可视化的 数据分析、性能监控、集群启停、自动化部署以及权限管控等能力; 数据应用层: 用户或者应用可直接调用 PieCloudDB 云原生虚拟数仓服务进行数据分析,提供标准的 SQL 接口,且内置各种分析工 具,并原生兼容 Postgres 生态,可以很好地处理地理信息数据和文本,未来会扩展其他
    0 码力 | 17 页 | 2.02 MB | 1 年前
    3
  • pdf文档 AGI 趋势下的云原生数据计算系统

    AGI趋势下的云原生数据计算系统 演讲人:徐阳 拓数派:大模型数据计算系统先行者 l 拓数派( OpenPie)是立足于国内的基础数据计 算领域高科技创新机构; l 拥有强大的数据库内核研发团队、数据科学家团 队和数字化转型团队; l 国内虚拟数仓和eMPP技术提出者,不断在数据 计算引擎方向进行创新,全面拥抱AI技术趋势。 企业介绍 云原生数据计算系统 围绕数据组织云原生计算系统, 重构数据存储和计算,一份存 储,多引擎数据计算,全面升 级大数据系统至大模型时代。 02 中国AGI发展趋势 中国AGI市场融资非常活跃, AGI顶级人才非常欠缺,整 个市场将长期保持快速增 长态势。 01 AIGC全生命周期管理 基于PieCloudML,为企业构 建统一的MaaS框架和AIGC开 发框架,对模型和AI Agent进 行高效管理。 03 案例分享 基于PieDataCS的用户案例实 说明:数据来自InfoQ研究中心 中国AGI发展趋势 l 中国AGI市场自下向上分为基础设施层、模型层、中间层和应用层四层,这四层结构共同构成了中国AGI市场的技术框架。 国内AGI市场分层 中国AGI发展趋势 l 在通往AGI的征途上,AI Agent正逐渐成为探索的核心路径。但随着时间的推移,大模型的一些局限性开始显现,尽管大模型在模仿人类 认知方面取得了显著进步,但要达到真正的通用智能,仍需克服重重困难。因此,AI
    0 码力 | 26 页 | 2.84 MB | 1 年前
    3
  • pdf文档 TiDB v5.2 中文手册

    · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 338 8.10 乐观事务模型下写写冲突问题排查· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 下,可以同一个系统中做联机交易处理、实时数据分析,极大地节省企业的成本。 • 数据汇聚、二次加工处理的场景 当前绝大部分企业的业务数据都分散在不同的系统中,没有一个统一的汇总,随着业务的发展,企业 的决策层需要了解整个公司的业务状况以便及时做出决策,故需要将分散在各个系统的数据汇聚在同 一个系统并进行二次加工处理生成 T+0 或 T+1 的报表。传统常见的解决方案是采用 ETL + Hadoop 来完成, noop 变量 innodb_default_row_format,配置此变量无实际效果 #23541。 • 从 TiDB 5.2 起,为了提高系统安全性,建议(但不要求)对来自客户端的连接进行传输层加密,TiDB 提 供 Auto TLS 功能在 TiDB 服务器端自动配置并开启加密。要使用 Auto TLS 功能,请在 TiDB 升级前将 TiDB 配 置文件中的security.auto-tls
    0 码力 | 2259 页 | 48.16 MB | 1 年前
    3
  • pdf文档 PieCloudDB Database 产品白皮书

    pieCloudDB 整体架构分为三个层次,包括基础设施层、数据处理层及数据应用层。详细阐述如下: 基础设施层为 pieCloudDB 提供计算资源、存储资源和网络资源,PieCloudDB 支持部署在物理服务器、庶拟机以及容 器中,同时也提供 PieCloudDB 公有云 Saa5 服务。 * ”数据处理层 PieCloudDB 核心服务层,提供了并行数据处理能力,拥有元数据节点、计算节点、存储节点以及云原生平台节点等 务和数据量的变化,, 动态油整 pieCloudDB 集群中计算节点的数量和虚拟数仓的数量,用最适合的资源量来满足其业务需求。 ,。 高可用能力 pieCloudDB 实现了元数据、计算、存储等三层架构,计算节点不存储用户数据,是无状态的。当计算节点发生故障 时,PieCloudDB 会自动快速发现并调度新的节点蔡代故障节点,同时也会在后台尝试修复故障节点,从而保证 PieCloudDB 服务的高可用性。 loudDB PiecloudDB 还支持查询优化器Orca。Orca是一款开源的、基于Cascades 模型的模块化查询优化器, 可以帮助用户对SQL进行优化,生成高效的查询计划。 此外,PieCloudDB 兼容 ORCA 优化器 (DORCA 是一款开源的、基于 Cascades 模型的模块化查询优化器,可以帮助用 户对 SQL 进行优化,生成高效的查询计划) 。 * 原生多租户支持 PieCloudDB
    0 码力 | 17 页 | 2.68 MB | 1 年前
    3
  • pdf文档 TiDB v8.5 中文手册

    · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 1294 10.2.5 乐观事务模型下写写冲突问题排查· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 1297 10 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 2630 14.3.15 TiFlash Pipeline Model 执行模型 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 2631 14 4/vector-search-overview">向量搜索功能( �→ 实验特性) 向量搜索是一种基于数据语义的搜索方法,可以提供更相关的搜索结果。作为 AI 和大语言模型 (LLM) �→ 的核心功能之一,向量搜索可用于检索增强生成 (Retrieval-Augmented Generation, RAG)、 �→ 语义搜索、推荐系统等多种场景。 40
    0 码力 | 5095 页 | 104.54 MB | 9 月前
    3
共 92 条
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 10
前往
页
相关搜索词
兼容原生模型数据计算系统DataCS时代向量据库数据库设计应用SelectDB案例ClickHouseApacheDoris赋能工业软件创新实践Apache Doris美团虚拟数仓PieCloudDBDatabase产品白皮皮书白皮书AGI趋势TiDBv5中文手册v8
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩