JVM 内存模型
JVM 内存模型 Heap Method Area Runtime Constant Pool Thread Thread Thread PC Register JVM Stack Native Method Stack PC Register JVM Stack Native Method Stack PC Register JVM Stack Native Method0 码力 | 1 页 | 48.42 KB | 1 年前3RustBelt - Rust 的形式化语义模型
第三届中国 Rust 开发者大会 王俊吉 RustBelt - Rust 的形式化语义模型 Outline Background • RustBelt Project • Rust Types Overview Rust Semantics • Type System • The own Predict • Exclusive Ownership & Mutable Borrow0 码力 | 21 页 | 2.63 MB | 1 年前3领域驱动设计&中台/架构分层模型适配
架构分层模型适配 吴雪峰@201811 — 有效防⽌止架构腐化实践 CONTENTS 01 DDD分层参考架构 02 严纪律律 防腐化 — 分层模型适配 03 分层模型适配实例例 DDD分层参考架构 DDD分层参考架构 给⽤用户提供界⾯面,关注⽤用户交互和体验 前端应⽤用 API服务 业务领域 基础设施 为前端应⽤用提供API服务,关注事务和分布式等技术性问题 领域模型和领域逻辑,关注业务概念。 ⼤大量量业务逻辑堆积 模型: • View Object • Resource Model DDD分层参考架构 领域模型和领域逻辑,关注业务概念。 前端应⽤用 API服务 领域模型 基础设施 ⼲干系⼈人: 业务领域专家,业务领导 诉求: 表现业务概念和实现业务价值 要点: 业务建模和复杂性管理理 ⼯工作内容: • 建⽴立业务模型,并体现在代码上 • 管理理模型复杂度,适度拆分模块 ⼤大量量技术术语业务⼈人员完全看不不懂 模型: • 应⽤用服务 — 跨Bond Context DTO • 领域服务 — 跨聚合 • 聚合 实体 仓库 事件 DDD分层参考架构 访问外界系统(调⽤用外界系统)的技术相关实现。 前端应⽤用 API服务 业务领域 基础设施 ⼲干系⼈人: 外界系统 诉求: 稳定调⽤用外部系统 技术点: 使⽤用和适配外部系统模型,隔离和快速诊断错误 ⼯工作内容:0 码力 | 39 页 | 2.54 MB | 1 年前3Java 应用与开发 - Java 内存模型与分配机制
大纲 Java 内存模型 Java 程序内存运行分析 Java 内存管理建议 Java 应用与开发 Java 内存模型与分配机制 王晓东 wangxiaodong@ouc.edu.cn 中国海洋大学 September 30, 2018 大纲 Java 内存模型 Java 程序内存运行分析 Java 内存管理建议 学习目标 1. 理解 JVM 内存模型,掌握 JVM 内存构成 2 建立编程时高效利用内存、避免内存溢出的理念 大纲 Java 内存模型 Java 程序内存运行分析 Java 内存管理建议 大纲 Java 内存模型 Java 程序内存运行分析 Java 内存管理建议 大纲 Java 内存模型 Java 程序内存运行分析 Java 内存管理建议 ���� Java 内存模型 Java 程序内存运行分析 Java 内存管理建议 大纲 Java 内存模型 Java 程序内存运行分析 Java Java栈 程序计数器 本地方法栈 执行引擎 本地接口 通过全限定名装载 操作系统 操作系统本地库 运行时数据区 大纲 Java 内存模型 Java 程序内存运行分析 Java 内存管理建议 JVM 内存模型 动画演示 JVM 内存模型 JVM内存模型 Heap Method Area Runtime Constant Pool Thread Thread Thread PC Register0 码力 | 44 页 | 818.30 KB | 1 年前32 使用Python训练和部署低精度模型 张校捷
使用Python训练和部署低精度模型 (TensorFlow版) 张校捷 2019/9/21 目录 CONTENTS 低精度的概念和意义 TensorFlow的FP16模型 TensorRT的FP16/Int8模型 总结 1 低精度的概念和意义 实数的16-bit半精度浮点数和8-bit定点数表示 使用低精度的意义 深度学习模型中实数的表示 FP32: E8M23 FP16: ResNet-50-v1.5 3.3X speedup SSD-RN50-FPN-640 2.5X speedup FP16浮点数(E5M10)的表示范围 FP16模型的训练方法 Int8模型的推断过程 2 TensorFlow的FP16模型 实数的16-bit半精度浮点数和8-bit定点数表示 使用低精度的意义 TensorCores适用条件 1. 卷积:K(输入通道),C(输出通道) 2 2=1 TF_ENABLE_CUDNN_TENSOR_OP_MATH_FP32=1 TF_ENABLE_CUDNN_RNN_TENSOR_OP_MATH_FP32=1 TensorFlow手动转换模型 import tensorflow as tf import numpy as numpy input = tf.placeholder(dtype=tf.float32, shape=[None0 码力 | 24 页 | 981.45 KB | 1 年前3Go在数据库中间件的应用
Go在数据库中间件的应用 基础架构组/刘延允 liuyun827@foxmail.com 2017年9月 1 关于我 • 刘延允——酷狗音乐,基础架构组 • 数据库变更通知服务 • 酷狗消息队列 • 酷狗数据库中间件 • 主要工作:分布式存储、高可用、数据库 • 两年通信设备开发经验,四年互联网 • 五年C/C++使用经验,一年Golang 2 CONTENTS • 程序开发的需求 平滑上下线Mysql。 • 主备自动切换(主-主模式)。 • 分表设计——按照Hash分表 • 分表设计——按照范围分表(年、月、日、整形) • 数据库表在多个mysql实例间平滑扩容 • 大表拆分为多个子表情况下的平滑扩容 7 系统整体方案 • 现存问题 • 数据库访问基本采用直连方式 • 无法满足数据访问平台化要求 • 配置管理方式落后,运维压力大 • 为什么采用Go来实现 • go诸多优点,可用性高0 码力 | 17 页 | 4.02 MB | 1 年前34.GPT 与数据库的生态整合
GPT 与数据库的生态整合 王琦智 PingCAP TiDB 开发者生态高级工程师 目 录 自然语言到 SQL 01 自然语言到图表 02 GPTs 调用数据库 API 03 总结 04 自然语言到SQL OSS Insight 自然语言到图表 Thoughts to insights made easy(with AI) GPTs 调用数据库 API Thank You0 码力 | 21 页 | 3.33 MB | 1 年前3刘用涛 CnosDB时序数据库的Rust实践
第三届中国Rust开发者大会 CnosDB时序数据库的Rust实践 Yongtao Liu CnosDB 研发工程师 Rust China Conf 2023 CnosDB 是一款基于 Rust 开发的 开源的分布式时序数据库 1. CnosDB 架构与选型 2. 为何从 Go 切换到 Rust 3. 使用 Rust 经验分享 4. 反哺社区0 码力 | 26 页 | 3.28 MB | 1 年前31 藤井美娜 Python的NLP实战分享 如何实现合同风险预测模型
Python的NLP实战分享 如何实现合同风险预测模型? GVA TECH Co., Ltd 藤井美娜 自我介绍 2% |# | self-introduction • Machine Learning Engineer / Data Scientist • GVA TECH的人工智能法律服务AI-CON的多语言系统 开发负责人 inazo18 藤井美娜 目录 CONTENTS CONTENTS 1. Python NLP 入门 2. 多语言NLP攻略 3.“合同风险预测模型”实战经验分享 4. 总结 5% |### | today’s topic 1 Python NLP 入门 简单介绍自然语言处理的流程和使用corpus的EDA方法。 8% |##### | section1 NLP基础 11% |######### | section1 收集语料 前处理 section1 收集语料 前处理 分词 向量化 机器学习模型 各种OUTPUT 语义解析 NLP基础 22% |################## | section1 收集语料 前处理 分词 向量化 机器学习模型 各种OUTPUT 语义解析 有时候会把语义分析的结果做成 feature,放进机器学习模型里。 EDA NLP基础 25% |###################0 码力 | 36 页 | 3.95 MB | 1 年前33 Python的NLP实战分享 如何实现合同风险预测模型 藤井美娜
Python的NLP实战分享 如何实现合同风险预测模型? GVA TECH Co., Ltd 藤井美娜 自我介绍 2% |# | self-introduction • Machine Learning Engineer / Data Scientist • GVA TECH的人工智能法律服务AI-CON的多语言系统 开发负责人 inazo18 藤井美娜 目录 CONTENTS CONTENTS 1. Python NLP 入门 2. 多语言NLP攻略 3.“合同风险预测模型”实战经验分享 4. 总结 5% |### | today’s topic 1 Python NLP 入门 简单介绍自然语言处理的流程和使用corpus的EDA方法。 8% |##### | section1 NLP基础 11% |####### | section1 收集语料 前处理 分词 收集语料 前处理 分词 向量化 (Vectorization) 机器学习模型 各种OUTPUT 语义解析 NLP基础 19% |################ | section1 收集语料 前处理 分词 向量化 机器学习模型 语义解析 有时候会把语义分析的结果feature, 放进机器学习模型里。 各种OUTPUT EDA NLP基础 23% |###################0 码力 | 33 页 | 1.67 MB | 1 年前3
共 489 条
- 1
- 2
- 3
- 4
- 5
- 6
- 49