积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部后端开发(405)Python(124)区块链(48)PyWebIO(48)Go(45)Java(35)C++(28)Rust(16)架构设计(16)PHP(14)

语言

全部中文(简体)(361)英语(42)

格式

全部PDF文档 PDF(302)其他文档 其他(80)PPT文档 PPT(22)DOC文档 DOC(1)
 
本次搜索耗时 0.017 秒,为您找到相关结果约 405 个.
  • 全部
  • 后端开发
  • Python
  • 区块链
  • PyWebIO
  • Go
  • Java
  • C++
  • Rust
  • 架构设计
  • PHP
  • 全部
  • 中文(简体)
  • 英语
  • 全部
  • PDF文档 PDF
  • 其他文档 其他
  • PPT文档 PPT
  • DOC文档 DOC
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Rust并行编译的挑战与突破

    Rust并行编译的挑战与突破 李原 2022年5月28日 • 相关浅谈 • Rust并行编译的挑战与突破 • 从并行编译到并行程序设计 • Rust社区与并行编译 目录 相关浅谈 Rust编译速度之殇 编译器设计造成编译速度缓慢 · 单态化 · 借用检查 · 宏展开 · MIR优化 ... Rust规模编译速度慢于C++ Rust编译速度之殇 提升编译效率成为近年社区重点工作 提升编译效率成为近年社区重点工作 并行编译或成下一代编译效率突破利器 2017-2021,Rust编译速度已提升一倍以上 Rust社区编译器性能工作组 Rust编译器并行化 Cargo多crate并行 二进制生成并行 更多更好的并行化? Rust编译器架构 语法树生成 宏展开 命名解析 泛型解析 类型检查 借用检查 单态化 二进制生成 增量编译系统 底层数据 结构 Rust语言编译器结构总览 考虑内部编译流程并行化 考虑内部编译流程并行化 Rust并行并发 编译时线程安全检查 一些常见线程安全数据结构 常用Rust并行并发库 Rust并行并发 增加程序复杂度 线程安全数据结构造成效率损失 Mutex与RwLock rustc profileing 数据 · 代码复杂度及健壮性 · benchmark资源限制 · profileing成本 ... 收益 > 代价? Rust并行编译的挑战与突破
    0 码力 | 25 页 | 4.60 MB | 1 年前
    3
  • ppt文档 C++高性能并行编程与优化 - 课件 - 06 TBB 开启的并行编程之旅

    TBB 开启的并行编程之旅 by 彭于斌( @archibate ) 往期录播: https://www.bilibili.com/video/BV1fa411r7zp 课程 PPT 和代码: https://github.com/parallel101/course 高性能并行编程与优化 - 课程大纲 • 分为前半段和后半段,前半段主要介绍现代 C++ ,后半段主要介绍并行编程与优化。 4.编译器如何自动优化:从汇编角度看 C++ 5.C++11 起的多线程编程:从 mutex 到无锁并行 6.并行编程常用框架: OpenMP 与 Intel TBB 7.被忽视的访存优化:内存带宽与 cpu 缓存机制 8.GPU 专题: wrap 调度,共享内存, barrier 9.并行算法实战: reduce , scan ,矩阵乘法等 10.存储大规模三维数据的关键:稀疏数据结构 位时代过去了) 至少 2 核 4 线程(并行课…) 英伟达家显卡( GPU 专题) 软件要求: Visual Studio 2019 ( Windows 用户) GCC 9 及以上( Linux 用户) CMake 3.12 及以上(跨平台作业) Git 2.x (作业上传到 GitHub ) CUDA Toolkit 10.0 以上( GPU 专题) 第 0 章:从并发到并行 摩尔定律:停止增长了吗?
    0 码力 | 116 页 | 15.85 MB | 1 年前
    3
  • ppt文档 C++高性能并行编程与优化 - 课件 - 17 由浅入深学习 map 容器

    m) • 由于刚刚说了, map 真正的“元素类型”是 K-V 对,所以这里的 auto 如果不省略应该是 : • for (pair tmp: m) • 如果要单独访问 K 或者 V 怎么办?我们看一下 pair 的定义,里面只有两个成 员: • struct pair { • T1 first; T2 second; • }; }; map 的遍历:用 C++17 range-based loop • 所以 for (auto tmp: m) 这里 tmp 的类型是 pair 。 • 如果要单独访问 K 或者 V 怎么办?我们看一下 pair 的定义,里面只有两个成 员: • struct pair { • T1 first; • T2 second; } map 的遍历:用 C++17 range-based loop • 所以 for (auto tmp: m) 这里 tmp 的类型是 pair 。 • 如果要单独访问 K 或者 V 怎么办?我们看一下 pair 的定义,里面只有两个成 员: • struct pair { • T1 first; • T2 second;
    0 码力 | 90 页 | 8.76 MB | 1 年前
    3
  • ppt文档 C++高性能并行编程与优化 - 课件 - 11 现代 CMake 进阶指南

    s/104060927 环境变量的访问方式: $ENV{xx} • 用 ${xx} 访问的是局部变量,局部变量服从刚刚所说的父子模块传播规则。 • 而还有一种特殊的方式可以访问到系统的环境变量( environment variable ): $ENV{xx} 。 • 比如 $ENV{PATH} 就是获取 PATH 这个环境变量的值。 缓存变量的访问方式: $CACHE{xx} • 此外,还可以用 此外,还可以用 $CACHE{xx} 来访问缓存里的 xx 变量。 • 缓存变量和环境变量是不论父子模块都共用的,没有作用域一说。 ${xx} 找不到局部变量时,会自动去找缓存变量 • ${xx} 当找不到名为 xx 的局部变量时,就会去在缓存里查找名为 xx 的缓存变量。 • 因此这里 CMAKE_BUILD_TYPE 虽然在代码里没被 set ,但是他被 -D 参数固定在缓存 里了。
    0 码力 | 166 页 | 6.54 MB | 1 年前
    3
  • ppt文档 C++高性能并行编程与优化 - 课件 - 08 CUDA 开启的 GPU 编程

    原来,三重尖括号里的第二个参数决定着启动 kernel 时所用 GPU 的线程数量。 • GPU 是为并行而生的,可以开启很大数量的 线程,用于处理大吞吐量的数据。 获取线程编号 • 可以通过 threadIdx.x 获取当前线程的编 号,我们打印一下试试看。 • 这是 CUDA 中的特殊变量之一,只有在 核函数里才可以访问。 • 可以看到线程编号从 0 开始计数,打印出 了 0 , 1 , 2 。这也是我们指定了线程数 之前执行了 ,这是因为板块之间是高度并行的,不保 证执行的先后顺序。线程之间也是,这里 线程打印顺序没乱,不过是碰巧小于 32 而 已。 注意不要混淆 • 当前线程在板块中的编号: threadIdx • 当前板块中的线程数量: blockDim • 当前板块的编号: blockIdx • 总的板块数量: gridDim • 线程 (thread) :并行的最小单位 • 板块 (block) :指整个任务,包含若干个板块 • 从属关系:线程<板块<网格 • 调用语法: <<>> 区分板块和线程有点麻烦?“扁平化”他们! • 你可能觉得纳闷,既然已经有线程可以并行了 ,为什么还要引入板块的概念?稍后会说明区 分板块的重要原因。 • 如需总的线程数量: blockDim * gridDim • 如需总的线程编号: blockDim * blockIdx
    0 码力 | 142 页 | 13.52 MB | 1 年前
    3
  • ppt文档 C++高性能并行编程与优化 - 课件 - 07 深入浅出访存优化

    memory-bound • 通常来说,并行只能加速计算的部分,不能加速内存读写的部分 。 • 因此,对 fill 这种没有任何计算量,纯粹只有访存的循环体,并 行没有加速效果。称为内存瓶颈( memory-bound )。 • 而 sine 这种内部需要泰勒展开来计算,每次迭代计算量很大的 循环体,并行才有较好的加速效果。称为计算瓶颈( cpu- bound )。 • 并行能减轻计算瓶颈,但不减轻内存瓶颈,故后者是优化的重点 并行能减轻计算瓶颈,但不减轻内存瓶颈,故后者是优化的重点 。 浮点加法的计算量 • 冷知识:并行地给浮点数组每个元素做一次加法反而更慢。 • 因为一次浮点加法的计算量和访存的超高延迟相比实在太少了。 • 计算太简单,数据量又大,并行只带来了多线程调度的额外开销 。 • 小彭老师经验公式: 1 次浮点读写 ≈ 8 次浮点加法 • 如果矢量化成功( SSE ): 1 次浮点读写 ≈ 32 次浮点加法 • 如果 CPU 符合小彭老师的经验公式。 • “right” 和“ wrong” 指的是分支预测是否成功。 多少计算量才算多? • 看右边的 func ,够复杂了吧?也只是勉勉强强超过一 点内存的延迟了,但在 6 个物理核心上并行加速后, 还是变成 mem-bound 了。 • 加速比: 1.36 倍 • 应该达到 6 倍(物理核心数量)才算理想加速比。 加速曲线 • funcA 用了 2 核就饱和。 • funcB
    0 码力 | 147 页 | 18.88 MB | 1 年前
    3
  • ppt文档 C++高性能并行编程与优化 - 课件 - 01 学 C++ 从 CMake 学起

    学 C++ 从 CMake 学起 by 彭于斌( @archibate ) 高性能并行编程与优化 - 课程大纲 • 分为前半段和后半段,前半段主要介绍现代 C++ ,后半段主要介绍并行编程与优化。 1.课程安排与开发环境搭建: cmake 与 git 入门 2.现代 C++ 入门:常用 STL 容器, RAII 内存管理 3.现代 C++ 进阶:模板元编程与函数式编程 4.编译器如何自动优化:从汇编角度看 编译器如何自动优化:从汇编角度看 C++ 5.C++11 起的多线程编程:从 mutex 到无锁并行 6.并行编程常用框架: OpenMP 与 Intel TBB 7.被忽视的访存优化:内存带宽与 cpu 缓存机制 8.GPU 专题: wrap 调度,共享内存, barrier 9.并行算法实战: reduce , scan ,矩阵乘法等 10.存储大规模三维数据的关键:稀疏数据结构 11.物理仿真实战:邻居搜索表实现 流体求解 12.C++ 在 ZENO 中的工程实践:从 primitive 说起 13.结业典礼:总结所学知识与优秀作业点评 I 硬件要求: 64 位( 32 位时代过去了) 至少 2 核 4 线程(并行课…) 英伟达家显卡( GPU 专题) 软件要求: Visual Studio 2019 ( Windows 用户) GCC 9 及以上( Linux 用户) CMake 3.12 及以上(跨平台作业)
    0 码力 | 32 页 | 11.40 MB | 1 年前
    3
  • ppt文档 C++高性能并行编程与优化 - 课件 - 03 现代 C++ 进阶:模板元编程

    com/video/BV1fa411r7zp 课程 PPT 和代码: https://github.com/parallel101/course 高性能并行编程与优化 - 课程大纲 • 分为前半段和后半段,前半段主要介绍现代 C++ ,后半段主要介绍并行编程与优化。 1.课程安排与开发环境搭建: cmake 与 git 入门 2.现代 C++ 入门:常用 STL 容器, RAII 内存管理 3 4.编译器如何自动优化:从汇编角度看 C++ 5.C++11 起的多线程编程:从 mutex 到无锁并行 6.并行编程常用框架: OpenMP 与 Intel TBB 7.被忽视的访存优化:内存带宽与 cpu 缓存机制 8.GPU 专题: wrap 调度,共享内存, barrier 9.并行算法实战: reduce , scan ,矩阵乘法等 10.存储大规模三维数据的关键:稀疏数据结构 流体求解 12.C++ 在 ZENO 中的工程实践:从 primitive 说起 13.结业典礼:总结所学知识与优秀作业点评 I 硬件要求: 64 位( 32 位时代过去了) 至少 2 核 4 线程(并行课…) 英伟达家显卡( GPU 专题) 软件要求: Visual Studio 2019 ( Windows 用户) GCC 9 及以上( Linux 用户) CMake 3.12 及以上(跨平台作业)
    0 码力 | 82 页 | 12.15 MB | 1 年前
    3
  • ppt文档 C++高性能并行编程与优化 - 课件 - 02 现代 C++ 入门:RAII 内存管理

    bilibili.com/263032155 PPT 和代码: https://github.com/parallel101/course 高性能并行编程与优化 - 课程大纲 • 分为前半段和后半段,前半段主要介绍现代 C++ ,后半段主要介绍并行编程与优化。 1.课程安排与开发环境搭建: cmake 与 git 入门 2.现代 C++ 入门:常用 STL 容器, RAII 内存管理 3 4.编译器如何自动优化:从汇编角度看 C++ 5.C++11 起的多线程编程:从 mutex 到无锁并行 6.并行编程常用框架: OpenMP 与 Intel TBB 7.被忽视的访存优化:内存带宽与 cpu 缓存机制 8.GPU 专题: wrap 调度,共享内存, barrier 9.并行算法实战: reduce , scan ,矩阵乘法等 10.存储大规模三维数据的关键:稀疏数据结构 流体求解 12.C++ 在 ZENO 中的工程实践:从 primitive 说起 13.结业典礼:总结所学知识与优秀作业点评 I 硬件要求: 64 位( 32 位时代过去了) 至少 2 核 4 线程(并行课…) 英伟达家显卡( GPU 专题) 软件要求: Visual Studio 2019 ( Windows 用户) GCC 9 及以上( Linux 用户) CMake 3.12 及以上(跨平台作业)
    0 码力 | 96 页 | 16.28 MB | 1 年前
    3
  • ppt文档 C++高性能并行编程与优化 - 课件 - Zeno 中的现代 C++ 最佳实践

    我们可以定义一个全局的函数表(右图中的 functab ),然后利用小彭老师的静态初始化 大法,把这些函数在 main 之前就插入到全局 的函数表。 • 这样 main 里面就可以仅通过函数名从 functab 访问到他们,从而 catFunc 和 dogFunc 甚至不需要在头文件里声明(只需 要他们的函数签名一样即可放入 function 容 器)。 静态初始化的顺序是符号定义的顺序决定的,若在不同文件则顺序可能打乱
    0 码力 | 54 页 | 3.94 MB | 1 年前
    3
共 405 条
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 41
前往
页
相关搜索词
Rust并行编译挑战突破C++高性性能高性能编程优化课件0617110807010302
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩