《玩转webpack》第五章 进阶篇: webpack 构建速度和体积优化策略
基础篇:webpack 与构建发展简史 目 录 CONTENTS 01 基础篇:webpack 基础用法 02 进阶篇:编写可维护的 webpack 构建配置 04 进阶篇:webpack 构建速度和体积优化策略 05 原理篇:通过源码掌握 webpack 打包原理 06 原理篇:编写 Loader 和插件 07 实战篇:React 全家桶 和 webpack 开发商城项目 08 基础篇:webpack 可以分析哪些问题? 依赖的第三方模块文件大小 业务里面的组件代码大小 使用高版本的 webpack 和 Node.js 构建时间降低了 60%-98%! 使用 webpack4:优化原因 V8 带来的优化(for of 替代 forEach、Map 和 Set 替代 Object、includes 替代 indexOf) 默认使用更快的 md4 hash 算法 webpacks AST n 缩小构建目标 比如 babel-loader 不解析 node_modules 目的:尽可能的少构建模块 减少文件搜索范围 优化 resolve.mainFields 配置 优化 resolve.modules 配置(减少模块搜索层级) 优化 resolve.extensions 配置 合理使用 alias 图片压缩 使用:配置 image-webpack-loader 要求:基于0 码力 | 36 页 | 8.13 MB | 1 年前3Hello 算法 1.1.0 Dart版
10.3 二分查找边界 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213 10.4 哈希优化策略 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216 10.5 重识搜索算法 . . . 时间效率:算法运行速度的快慢。 ‧ 空间效率:算法占用内存空间的大小。 简而言之,我们的目标是设计“既快又省”的数据结构与算法。而有效地评估算法效率至关重要,因为只有 这样,我们才能将各种算法进行对比,进而指导算法设计与优化过程。 效率评估方法主要分为两种:实际测试、理论估算。 2.1.1 实际测试 假设我们现在有算法 A 和算法 B ,它们都能解决同一问题,现在需要对比这两个算法的效率。最直接的方法 是找一台 递归:“自上而下”地解决问题。将原问题分解为更小的子问题,这些子问题和原问题具有相同的形式。 接下来将子问题继续分解为更小的子问题,直到基本情况时停止(基本情况的解是已知的)。 以上述求和函数为例,设问题 ?(?) = 1 + 2 + ⋯ + ? 。 ‧ 迭代:在循环中模拟求和过程,从 1 遍历到 ? ,每轮执行求和操作,即可求得 ?(?) 。 ‧ 递归:将问题分解为子问题 ?(?) = ?+?(?−1)0 码力 | 378 页 | 18.45 MB | 1 年前3Hello 算法 1.2.0 简体中文 Dart 版
10.3 二分查找边界 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213 10.4 哈希优化策略 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216 10.5 重识搜索算法 . . . 时间效率:算法运行时间的长短。 ‧ 空间效率:算法占用内存空间的大小。 简而言之,我们的目标是设计“既快又省”的数据结构与算法。而有效地评估算法效率至关重要,因为只有 这样,我们才能将各种算法进行对比,进而指导算法设计与优化过程。 效率评估方法主要分为两种:实际测试、理论估算。 2.1.1 实际测试 假设我们现在有算法 A 和算法 B ,它们都能解决同一问题,现在需要对比这两个算法的效率。最直接的方法 是找一台 递归:“自上而下”地解决问题。将原问题分解为更小的子问题,这些子问题和原问题具有相同的形式。 接下来将子问题继续分解为更小的子问题,直到基本情况时停止(基本情况的解是已知的)。 以上述求和函数为例,设问题 ?(?) = 1 + 2 + ⋯ + ? 。 ‧ 迭代:在循环中模拟求和过程,从 1 遍历到 ? ,每轮执行求和操作,即可求得 ?(?) 。 ‧ 递归:将问题分解为子问题 ?(?) = ?+?(?−1)0 码力 | 378 页 | 18.46 MB | 9 月前3Hello 算法 1.2.0 简体中文 JavaScript 版
10.3 二分查找边界 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213 10.4 哈希优化策略 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216 10.5 重识搜索算法 . . . 时间效率:算法运行时间的长短。 ‧ 空间效率:算法占用内存空间的大小。 简而言之,我们的目标是设计“既快又省”的数据结构与算法。而有效地评估算法效率至关重要,因为只有 这样,我们才能将各种算法进行对比,进而指导算法设计与优化过程。 效率评估方法主要分为两种:实际测试、理论估算。 2.1.1 实际测试 假设我们现在有算法 A 和算法 B ,它们都能解决同一问题,现在需要对比这两个算法的效率。最直接的方法 是找一台 递归:“自上而下”地解决问题。将原问题分解为更小的子问题,这些子问题和原问题具有相同的形式。 接下来将子问题继续分解为更小的子问题,直到基本情况时停止(基本情况的解是已知的)。 以上述求和函数为例,设问题 ?(?) = 1 + 2 + ⋯ + ? 。 ‧ 迭代:在循环中模拟求和过程,从 1 遍历到 ? ,每轮执行求和操作,即可求得 ?(?) 。 ‧ 递归:将问题分解为子问题 ?(?) = ?+?(?−1)0 码力 | 379 页 | 18.47 MB | 9 月前3Hello 算法 1.0.0 Dart版
10.3 二分查找边界 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215 10.4 哈希优化策略 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217 10.5 重识搜索算法 . . . 时间效率:算法运行速度的快慢。 ‧ 空间效率:算法占用内存空间的大小。 简而言之,我们的目标是设计“既快又省”的数据结构与算法。而有效地评估算法效率至关重要,因为只有 这样,我们才能将各种算法进行对比,进而指导算法设计与优化过程。 效率评估方法主要分为两种:实际测试、理论估算。 2.1.1 实际测试 假设我们现在有算法 A 和算法 B ,它们都能解决同一问题,现在需要对比这两个算法的效率。最直接的方法 是找一台 递归:“自上而下”地解决问题。将原问题分解为更小的子问题,这些子问题和原问题具有相同的形式。 接下来将子问题继续分解为更小的子问题,直到基本情况时停止(基本情况的解是已知的)。 以上述求和函数为例,设问题 ?(?) = 1 + 2 + ⋯ + ? 。 ‧ 迭代:在循环中模拟求和过程,从 1 遍历到 ? ,每轮执行求和操作,即可求得 ?(?) 。 ‧ 递归:将问题分解为子问题 ?(?) = ?+?(?−1)0 码力 | 377 页 | 17.56 MB | 1 年前3Hello 算法 1.1.0 TypeScript版
10.3 二分查找边界 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214 10.4 哈希优化策略 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217 10.5 重识搜索算法 . . . 时间效率:算法运行速度的快慢。 ‧ 空间效率:算法占用内存空间的大小。 简而言之,我们的目标是设计“既快又省”的数据结构与算法。而有效地评估算法效率至关重要,因为只有 这样,我们才能将各种算法进行对比,进而指导算法设计与优化过程。 效率评估方法主要分为两种:实际测试、理论估算。 2.1.1 实际测试 假设我们现在有算法 A 和算法 B ,它们都能解决同一问题,现在需要对比这两个算法的效率。最直接的方法 是找一台 递归:“自上而下”地解决问题。将原问题分解为更小的子问题,这些子问题和原问题具有相同的形式。 接下来将子问题继续分解为更小的子问题,直到基本情况时停止(基本情况的解是已知的)。 以上述求和函数为例,设问题 ?(?) = 1 + 2 + ⋯ + ? 。 ‧ 迭代:在循环中模拟求和过程,从 1 遍历到 ? ,每轮执行求和操作,即可求得 ?(?) 。 ‧ 递归:将问题分解为子问题 ?(?) = ?+?(?−1)0 码力 | 383 页 | 18.49 MB | 1 年前3Hello 算法 1.1.0 JavaScript版
10.3 二分查找边界 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213 10.4 哈希优化策略 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216 10.5 重识搜索算法 . . . 时间效率:算法运行速度的快慢。 ‧ 空间效率:算法占用内存空间的大小。 简而言之,我们的目标是设计“既快又省”的数据结构与算法。而有效地评估算法效率至关重要,因为只有 这样,我们才能将各种算法进行对比,进而指导算法设计与优化过程。 效率评估方法主要分为两种:实际测试、理论估算。 2.1.1 实际测试 假设我们现在有算法 A 和算法 B ,它们都能解决同一问题,现在需要对比这两个算法的效率。最直接的方法 是找一台 递归:“自上而下”地解决问题。将原问题分解为更小的子问题,这些子问题和原问题具有相同的形式。 接下来将子问题继续分解为更小的子问题,直到基本情况时停止(基本情况的解是已知的)。 以上述求和函数为例,设问题 ?(?) = 1 + 2 + ⋯ + ? 。 ‧ 迭代:在循环中模拟求和过程,从 1 遍历到 ? ,每轮执行求和操作,即可求得 ?(?) 。 ‧ 递归:将问题分解为子问题 ?(?) = ?+?(?−1)0 码力 | 379 页 | 18.46 MB | 1 年前3Hello 算法 1.0.0 JavaScript版
10.3 二分查找边界 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214 10.4 哈希优化策略 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216 10.5 重识搜索算法 . . . 时间效率:算法运行速度的快慢。 ‧ 空间效率:算法占用内存空间的大小。 简而言之,我们的目标是设计“既快又省”的数据结构与算法。而有效地评估算法效率至关重要,因为只有 这样,我们才能将各种算法进行对比,进而指导算法设计与优化过程。 效率评估方法主要分为两种:实际测试、理论估算。 2.1.1 实际测试 假设我们现在有算法 A 和算法 B ,它们都能解决同一问题,现在需要对比这两个算法的效率。最直接的方法 是找一台 递归:“自上而下”地解决问题。将原问题分解为更小的子问题,这些子问题和原问题具有相同的形式。 接下来将子问题继续分解为更小的子问题,直到基本情况时停止(基本情况的解是已知的)。 以上述求和函数为例,设问题 ?(?) = 1 + 2 + ⋯ + ? 。 ‧ 迭代:在循环中模拟求和过程,从 1 遍历到 ? ,每轮执行求和操作,即可求得 ?(?) 。 ‧ 递归:将问题分解为子问题 ?(?) = ?+?(?−1)0 码力 | 376 页 | 17.57 MB | 1 年前3Hello 算法 1.2.0 简体中文 TypeScript 版
10.3 二分查找边界 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214 10.4 哈希优化策略 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217 10.5 重识搜索算法 . . . 时间效率:算法运行时间的长短。 ‧ 空间效率:算法占用内存空间的大小。 简而言之,我们的目标是设计“既快又省”的数据结构与算法。而有效地评估算法效率至关重要,因为只有 这样,我们才能将各种算法进行对比,进而指导算法设计与优化过程。 效率评估方法主要分为两种:实际测试、理论估算。 2.1.1 实际测试 假设我们现在有算法 A 和算法 B ,它们都能解决同一问题,现在需要对比这两个算法的效率。最直接的方法 是找一台 递归:“自上而下”地解决问题。将原问题分解为更小的子问题,这些子问题和原问题具有相同的形式。 接下来将子问题继续分解为更小的子问题,直到基本情况时停止(基本情况的解是已知的)。 以上述求和函数为例,设问题 ?(?) = 1 + 2 + ⋯ + ? 。 ‧ 迭代:在循环中模拟求和过程,从 1 遍历到 ? ,每轮执行求和操作,即可求得 ?(?) 。 ‧ 递归:将问题分解为子问题 ?(?) = ?+?(?−1)0 码力 | 383 页 | 18.49 MB | 9 月前3Hello 算法 1.0.0b5 Dart版
10.3 二分查找边界 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211 10.4 哈希优化策略 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214 10.5 重识搜索算法 . . . 时间效率:算法运行速度的快慢。 ‧ 空间效率:算法占用内存空间的大小。 简而言之,我们的目标是设计“既快又省”的数据结构与算法。而有效地评估算法效率至关重要,因为只有 这样我们才能将各种算法进行对比,从而指导算法设计与优化过程。 效率评估方法主要分为两种:实际测试、理论估算。 2.1.1 实际测试 假设我们现在有算法 A 和算法 B ,它们都能解决同一问题,现在需要对比这两个算法的效率。最直接的方法 是找一台 递归:“自上而下”地解决问题。将原问题分解为更小的子问题,这些子问题和原问题具有相同的形式。 接下来将子问题继续分解为更小的子问题,直到基本情况时停止(基本情况的解是已知的)。 以上述的求和函数为例,设问题 ?(?) = 1 + 2 + ⋯ + ? 。 ‧ 迭代:在循环中模拟求和过程,从 1 遍历到 ? ,每轮执行求和操作,即可求得 ?(?) 。 ‧ 递归:将问题分解为子问题 ?(?) = ?+?(?−1)0 码力 | 376 页 | 30.67 MB | 1 年前3
共 58 条
- 1
- 2
- 3
- 4
- 5
- 6