Hello 算法 1.1.0 Dart版… ?2?1?0 根据 IEEE 754 标准,32‑bit 长度的 float 由以下三个部分构成。 ‧ 符号位 S :占 1 位,对应 ?31 。 ‧ 指数位 E :占 8 位,对应 ?30?29 … ?23 。 ‧ 分数位 N :占 23 位,对应 ?22?21 … ?0 。 二进制数 float 对应值的计算方法为: val = (−1)?31 × 2(?30?29…?23)2−127 现在我们可以回答最初的问题:float 的表示方式包含指数位,导致其取值范围远大于 int 。根据以上计算, float 可表示的最大正数为 2254−127 × (2 − 2−23) ≈ 3.4 × 1038 ,切换符号位便可得到最小负数。 尽管浮点数 float 扩展了取值范围,但其副作用是牺牲了精度。整数类型 int 将全部 32 比特用于表示数字, 数字是均匀分布的;而由于指数位的存在,浮点数 float 的 的数值越大,相邻两个数字之间的差值就会趋向越 大。 如表 3‑2 所示,指数位 E = 0 和 E = 255 具有特殊含义,用于表示零、无穷大、NaN 等。 表 3‑2 指数位含义 指数位 E 分数位 N = 0 分数位 N ≠ 0 计算公式 0 ±0 次正规数 (−1)S × 2−126 × (0.N) 1, 2, … , 254 正规数 正规数 (−1)S × 2(E−127) ×0 码力 | 378 页 | 18.45 MB | 1 年前3
Hello 算法 1.1.0 JavaScript版… ?2?1?0 根据 IEEE 754 标准,32‑bit 长度的 float 由以下三个部分构成。 ‧ 符号位 S :占 1 位,对应 ?31 。 ‧ 指数位 E :占 8 位,对应 ?30?29 … ?23 。 ‧ 分数位 N :占 23 位,对应 ?22?21 … ?0 。 二进制数 float 对应值的计算方法为: val = (−1)?31 × 2(?30?29…?23)2−127 现在我们可以回答最初的问题:float 的表示方式包含指数位,导致其取值范围远大于 int 。根据以上计算, float 可表示的最大正数为 2254−127 × (2 − 2−23) ≈ 3.4 × 1038 ,切换符号位便可得到最小负数。 尽管浮点数 float 扩展了取值范围,但其副作用是牺牲了精度。整数类型 int 将全部 32 比特用于表示数字, 数字是均匀分布的;而由于指数位的存在,浮点数 float 的 的数值越大,相邻两个数字之间的差值就会趋向越 大。 如表 3‑2 所示,指数位 E = 0 和 E = 255 具有特殊含义,用于表示零、无穷大、NaN 等。 表 3‑2 指数位含义 指数位 E 分数位 N = 0 分数位 N ≠ 0 计算公式 0 ±0 次正规数 (−1)S × 2−126 × (0.N) 1, 2, … , 254 正规数 正规数 (−1)S × 2(E−127) ×0 码力 | 379 页 | 18.46 MB | 1 年前3
Hello 算法 1.1.0 TypeScript版… ?2?1?0 根据 IEEE 754 标准,32‑bit 长度的 float 由以下三个部分构成。 ‧ 符号位 S :占 1 位,对应 ?31 。 ‧ 指数位 E :占 8 位,对应 ?30?29 … ?23 。 ‧ 分数位 N :占 23 位,对应 ?22?21 … ?0 。 二进制数 float 对应值的计算方法为: val = (−1)?31 × 2(?30?29…?23)2−127 现在我们可以回答最初的问题:float 的表示方式包含指数位,导致其取值范围远大于 int 。根据以上计算, float 可表示的最大正数为 2254−127 × (2 − 2−23) ≈ 3.4 × 1038 ,切换符号位便可得到最小负数。 尽管浮点数 float 扩展了取值范围,但其副作用是牺牲了精度。整数类型 int 将全部 32 比特用于表示数字, 数字是均匀分布的;而由于指数位的存在,浮点数 float 的 的数值越大,相邻两个数字之间的差值就会趋向越 大。 如表 3‑2 所示,指数位 E = 0 和 E = 255 具有特殊含义,用于表示零、无穷大、NaN 等。 表 3‑2 指数位含义 指数位 E 分数位 N = 0 分数位 N ≠ 0 计算公式 0 ±0 次正规数 (−1)S × 2−126 × (0.N) 1, 2, … , 254 正规数 正规数 (−1)S × 2(E−127) ×0 码力 | 383 页 | 18.49 MB | 1 年前3
Hello 算法 1.2.0 简体中文 Dart 版… ?2?1?0 根据 IEEE 754 标准,32‑bit 长度的 float 由以下三个部分构成。 ‧ 符号位 S :占 1 位,对应 ?31 。 ‧ 指数位 E :占 8 位,对应 ?30?29 … ?23 。 ‧ 分数位 N :占 23 位,对应 ?22?21 … ?0 。 二进制数 float 对应值的计算方法为: val = (−1)?31 × 2(?30?29…?23)2−127 现在我们可以回答最初的问题:float 的表示方式包含指数位,导致其取值范围远大于 int 。根据以上计算, float 可表示的最大正数为 2254−127 × (2 − 2−23) ≈ 3.4 × 1038 ,切换符号位便可得到最小负数。 尽管浮点数 float 扩展了取值范围,但其副作用是牺牲了精度。整数类型 int 将全部 32 比特用于表示数字, 数字是均匀分布的;而由于指数位的存在,浮点数 float 的 的数值越大,相邻两个数字之间的差值就会趋向越 大。 如表 3‑2 所示,指数位 E = 0 和 E = 255 具有特殊含义,用于表示零、无穷大、NaN 等。 表 3‑2 指数位含义 指数位 E 分数位 N = 0 分数位 N ≠ 0 计算公式 0 ±0 次正规数 (−1)S × 2−126 × (0.N) 1, 2, … , 254 正规数 正规数 (−1)S × 2(E−127) ×0 码力 | 378 页 | 18.46 MB | 10 月前3
Hello 算法 1.2.0 简体中文 JavaScript 版… ?2?1?0 根据 IEEE 754 标准,32‑bit 长度的 float 由以下三个部分构成。 ‧ 符号位 S :占 1 位,对应 ?31 。 ‧ 指数位 E :占 8 位,对应 ?30?29 … ?23 。 ‧ 分数位 N :占 23 位,对应 ?22?21 … ?0 。 二进制数 float 对应值的计算方法为: val = (−1)?31 × 2(?30?29…?23)2−127 现在我们可以回答最初的问题:float 的表示方式包含指数位,导致其取值范围远大于 int 。根据以上计算, float 可表示的最大正数为 2254−127 × (2 − 2−23) ≈ 3.4 × 1038 ,切换符号位便可得到最小负数。 尽管浮点数 float 扩展了取值范围,但其副作用是牺牲了精度。整数类型 int 将全部 32 比特用于表示数字, 数字是均匀分布的;而由于指数位的存在,浮点数 float 的 的数值越大,相邻两个数字之间的差值就会趋向越 大。 如表 3‑2 所示,指数位 E = 0 和 E = 255 具有特殊含义,用于表示零、无穷大、NaN 等。 表 3‑2 指数位含义 指数位 E 分数位 N = 0 分数位 N ≠ 0 计算公式 0 ±0 次正规数 (−1)S × 2−126 × (0.N) 1, 2, … , 254 正规数 正规数 (−1)S × 2(E−127) ×0 码力 | 379 页 | 18.47 MB | 10 月前3
Hello 算法 1.0.0b5 JavaScript版1?0 根据 IEEE 754 标准,32‑bit 长度的 float 由以下三个部分构成。 ‧ 符号位 S :占 1 bit ,对应 ?31 。 ‧ 指数位 E :占 8 bits ,对应 ?30?29 … ?23 。 ‧ 分数位 N :占 23 bits ,对应 ?22?21 … ?0 。 二进制数 float 对应的值的计算方法: val = (−1)?31 × 2(?30?29… 现在我们可以回答最初的问题:float 的表示方式包含指数位,导致其取值范围远大于 int 。根据以上计算, float 可表示的最大正数为 2254−127 × (2 − 2−23) ≈ 3.4 × 1038 ,切换符号位便可得到最小负数。 尽管浮点数 float 扩展了取值范围,但其副作用是牺牲了精度。整数类型 int 将全部 32 位用于表示数字,数 字是均匀分布的;而由于指数位的存在,浮点数 float 的数 的数值越大,相邻两个数字之间的差值就会趋向越 大。 如表 3‑2 所示,指数位 ? = 0 和 ? = 255 具有特殊含义,用于表示零、无穷大、NaN 等。 表 3‑2 指数位含义 指数位 E 分数位 N = 0 分数位 N ≠ 0 计算公式 0 ±0 次正规数 (−1)S × 2−126 × (0.N) 1, 2, … , 254 正规数 正规数 (−1)S × 2(E−127) × (10 码力 | 375 页 | 30.68 MB | 1 年前3
Hello 算法 1.0.0 JavaScript版… ?2?1?0 根据 IEEE 754 标准,32‑bit 长度的 float 由以下三个部分构成。 ‧ 符号位 S :占 1 位,对应 ?31 。 ‧ 指数位 E :占 8 位,对应 ?30?29 … ?23 。 ‧ 分数位 N :占 23 位,对应 ?22?21 … ?0 。 二进制数 float 对应值的计算方法为: val = (−1)?31 × 2(?30?29…?23)2−127 现在我们可以回答最初的问题:float 的表示方式包含指数位,导致其取值范围远大于 int 。根据以上计算, float 可表示的最大正数为 2254−127 × (2 − 2−23) ≈ 3.4 × 1038 ,切换符号位便可得到最小负数。 尽管浮点数 float 扩展了取值范围,但其副作用是牺牲了精度。整数类型 int 将全部 32 比特用于表示数字, 数字是均匀分布的;而由于指数位的存在,浮点数 float 的 的数值越大,相邻两个数字之间的差值就会趋向越 大。 如表 3‑2 所示,指数位 ? = 0 和 ? = 255 具有特殊含义,用于表示零、无穷大、NaN 等。 表 3‑2 指数位含义 指数位 E 分数位 N = 0 分数位 N ≠ 0 计算公式 0 ±0 次正规数 (−1)S × 2−126 × (0.N) 1, 2, … , 254 正规数 正规数 (−1)S × 2(E−127) ×0 码力 | 376 页 | 17.57 MB | 1 年前3
Hello 算法 1.0.0b5 TypeScript 版1?0 根据 IEEE 754 标准,32‑bit 长度的 float 由以下三个部分构成。 ‧ 符号位 S :占 1 bit ,对应 ?31 。 ‧ 指数位 E :占 8 bits ,对应 ?30?29 … ?23 。 ‧ 分数位 N :占 23 bits ,对应 ?22?21 … ?0 。 二进制数 float 对应的值的计算方法: val = (−1)?31 × 2(?30?29… 现在我们可以回答最初的问题:float 的表示方式包含指数位,导致其取值范围远大于 int 。根据以上计算, float 可表示的最大正数为 2254−127 × (2 − 2−23) ≈ 3.4 × 1038 ,切换符号位便可得到最小负数。 尽管浮点数 float 扩展了取值范围,但其副作用是牺牲了精度。整数类型 int 将全部 32 位用于表示数字,数 字是均匀分布的;而由于指数位的存在,浮点数 float 的数 的数值越大,相邻两个数字之间的差值就会趋向越 大。 如表 3‑2 所示,指数位 ? = 0 和 ? = 255 具有特殊含义,用于表示零、无穷大、NaN 等。 表 3‑2 指数位含义 指数位 E 分数位 N = 0 分数位 N ≠ 0 计算公式 0 ±0 次正规数 (−1)S × 2−126 × (0.N) 1, 2, … , 254 正规数 正规数 (−1)S × 2(E−127) × (10 码力 | 378 页 | 30.70 MB | 1 年前3
Hello 算法 1.0.0b5 Dart版1?0 根据 IEEE 754 标准,32‑bit 长度的 float 由以下三个部分构成。 ‧ 符号位 S :占 1 bit ,对应 ?31 。 ‧ 指数位 E :占 8 bits ,对应 ?30?29 … ?23 。 ‧ 分数位 N :占 23 bits ,对应 ?22?21 … ?0 。 二进制数 float 对应的值的计算方法: val = (−1)?31 × 2(?30?29… 现在我们可以回答最初的问题:float 的表示方式包含指数位,导致其取值范围远大于 int 。根据以上计算, float 可表示的最大正数为 2254−127 × (2 − 2−23) ≈ 3.4 × 1038 ,切换符号位便可得到最小负数。 尽管浮点数 float 扩展了取值范围,但其副作用是牺牲了精度。整数类型 int 将全部 32 位用于表示数字,数 字是均匀分布的;而由于指数位的存在,浮点数 float 的数 的数值越大,相邻两个数字之间的差值就会趋向越 大。 如表 3‑2 所示,指数位 ? = 0 和 ? = 255 具有特殊含义,用于表示零、无穷大、NaN 等。 表 3‑2 指数位含义 指数位 E 分数位 N = 0 分数位 N ≠ 0 计算公式 0 ±0 次正规数 (−1)S × 2−126 × (0.N) 1, 2, … , 254 正规数 正规数 (−1)S × 2(E−127) × (10 码力 | 376 页 | 30.67 MB | 1 年前3
Hello 算法 1.0.0 Dart版… ?2?1?0 根据 IEEE 754 标准,32‑bit 长度的 float 由以下三个部分构成。 ‧ 符号位 S :占 1 位,对应 ?31 。 ‧ 指数位 E :占 8 位,对应 ?30?29 … ?23 。 ‧ 分数位 N :占 23 位,对应 ?22?21 … ?0 。 二进制数 float 对应值的计算方法为: val = (−1)?31 × 2(?30?29…?23)2−127 现在我们可以回答最初的问题:float 的表示方式包含指数位,导致其取值范围远大于 int 。根据以上计算, float 可表示的最大正数为 2254−127 × (2 − 2−23) ≈ 3.4 × 1038 ,切换符号位便可得到最小负数。 尽管浮点数 float 扩展了取值范围,但其副作用是牺牲了精度。整数类型 int 将全部 32 比特用于表示数字, 数字是均匀分布的;而由于指数位的存在,浮点数 float 的 的数值越大,相邻两个数字之间的差值就会趋向越 大。 如表 3‑2 所示,指数位 ? = 0 和 ? = 255 具有特殊含义,用于表示零、无穷大、NaN 等。 表 3‑2 指数位含义 指数位 E 分数位 N = 0 分数位 N ≠ 0 计算公式 0 ±0 次正规数 (−1)S × 2−126 × (0.N) 1, 2, … , 254 正规数 正规数 (−1)S × 2(E−127) ×0 码力 | 377 页 | 17.56 MB | 1 年前3
共 24 条
- 1
- 2
- 3













