积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(179)后端开发(174)VirtualBox(113)数据库(52)Python(52)系统运维(48)Linux(45)其它语言(35)Celery(35)区块链(32)

语言

全部英语(334)中文(简体)(103)德语(7)法语(2)西班牙语(1)意大利语(1)日语(1)葡萄牙语(1)中文(繁体)(1)中文(简体)(1)

格式

全部PDF文档 PDF(386)其他文档 其他(67)
 
本次搜索耗时 0.089 秒,为您找到相关结果约 453 个.
  • 全部
  • 云计算&大数据
  • 后端开发
  • VirtualBox
  • 数据库
  • Python
  • 系统运维
  • Linux
  • 其它语言
  • Celery
  • 区块链
  • 全部
  • 英语
  • 中文(简体)
  • 德语
  • 法语
  • 西班牙语
  • 意大利语
  • 日语
  • 葡萄牙语
  • 中文(繁体)
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 其他文档 其他
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • epub文档 Agda User Manual v2.6.1.3

    can define the type Vec n of vectors of length n. This is a family of types indexed by objects in Nat (a type parameterized by natural numbers). Having dependent types, we must generalize the type of matrix, is then a function of type identity : (n : Nat) -> (Mat n n). Remark: We could, of course, just specify the identity function with the type Nat -> Nat -> Mat, where Mat is the type of matrices, but possible to define: equality on natural numbers properties of arithmetical operations the type (n : Nat) -> (PrimRoot n) consisting of functions computing primitive root in modular arithmetic. Of course
    0 码力 | 305 页 | 375.80 KB | 1 年前
    3
  • epub文档 Agda User Manual v2.6.1.2

    can define the type Vec n of vectors of length n. This is a family of types indexed by objects in Nat (a type parameterized by natural numbers). Having dependent types, we must generalize the type of matrix, is then a function of type identity : (n : Nat) -> (Mat n n). Remark: We could, of course, just specify the identity function with the type Nat -> Nat -> Mat, where Mat is the type of matrices, but possible to define: equality on natural numbers properties of arithmetical operations the type (n : Nat) -> (PrimRoot n) consisting of functions computing primitive root in modular arithmetic. Of course
    0 码力 | 304 页 | 375.60 KB | 1 年前
    3
  • epub文档 Agda User Manual v2.6.1.1

    can define the type Vec n of vectors of length n. This is a family of types indexed by objects in Nat (a type parameterized by natural numbers). Having dependent types, we must generalize the type of matrix, is then a function of type identity : (n : Nat) -> (Mat n n). Remark: We could, of course, just specify the identity function with the type Nat -> Nat -> Mat, where Mat is the type of matrices, but possible to define: equality on natural numbers properties of arithmetical operations the type (n : Nat) -> (PrimRoot n) consisting of functions computing primitive root in modular arithmetic. Of course
    0 码力 | 297 页 | 375.42 KB | 1 年前
    3
  • epub文档 Agda User Manual v2.6.1

    can define the type Vec n of vectors of length n. This is a family of types indexed by objects in Nat (a type parameterized by natural numbers). Having dependent types, we must generalize the type of matrix, is then a function of type identity : (n : Nat) -> (Mat n n). Remark: We could, of course, just specify the identity function with the type Nat -> Nat -> Mat, where Mat is the type of matrices, but possible to define: equality on natural numbers properties of arithmetical operations the type (n : Nat) -> (PrimRoot n) consisting of functions computing primitive root in modular arithmetic. Of course
    0 码力 | 297 页 | 375.42 KB | 1 年前
    3
  • epub文档 Agda User Manual v2.5.4.2

    various ways, e.g. as difference of two natural numbers: module Integer where abstract ℤ = Nat × Nat 0ℤ : ℤ 0ℤ = 0 , 0 1ℤ : ℤ 1ℤ = 1 , 0 _+ℤ_ : (x y : ℤ) → ℤ (p , n) +ℤ (p' , n') can see through the abstractions of their uncles: module Where where abstract x : Nat x = 0 y : Nat y = x where x≡y : x ≡ 0 x≡y = refl Type signatures in where blocks are blocks of abstract definitions: module WherePrivate where abstract x : Nat x = proj₁ t where T = Nat × Nat t : T t = 0 , 1 p : proj₁ t ≡ 0 p = refl Note that if p
    0 码力 | 216 页 | 207.61 KB | 1 年前
    3
  • pdf文档 Agda User Manual v2.5.4

    in various ways, e.g. as difference of two natural numbers: module Integer where abstract = Nat × Nat 0 : 0 = 0 , 0 1 : 1 = 1 , 0 _+_ : (x y : ) → (p , n) + (p' , n') = (p + p') , (n + n') -_ : they can see through the abstractions of their uncles: module Where where abstract x : Nat x = 0 y : Nat y = x where xy : x 0 xy = refl Type signatures in where blocks are private, so it is fine in where blocks of abstract definitions: module WherePrivate where abstract x : Nat x = proj1 t where T = Nat × Nat t : T t = 0 , 1 p : proj1 t 0 p = refl Note that if p was not private, application
    0 码力 | 155 页 | 668.67 KB | 1 年前
    3
  • pdf文档 Agda User Manual v2.5.4.1

    in various ways, e.g. as difference of two natural numbers: module Integer where abstract = Nat × Nat 0 : 0 = 0 , 0 1 : 1 = 1 , 0 _+_ : (x y : ) → (p , n) + (p' , n') = (p + p') , (n + n') -_ : they can see through the abstractions of their uncles: module Where where abstract x : Nat x = 0 y : Nat y = x where xy : x 0 xy = refl Type signatures in where blocks are private, so it is fine in where blocks of abstract definitions: module WherePrivate where abstract x : Nat x = proj1 t where T = Nat × Nat t : T t = 0 , 1 p : proj1 t 0 p = refl Note that if p was not private, application
    0 码力 | 155 页 | 668.90 KB | 1 年前
    3
  • epub文档 Agda User Manual v2.5.4.1

    various ways, e.g. as difference of two natural numbers: module Integer where abstract ℤ = Nat × Nat 0ℤ : ℤ 0ℤ = 0 , 0 1ℤ : ℤ 1ℤ = 1 , 0 _+ℤ_ : (x y : ℤ) → ℤ (p , n) +ℤ (p' , n') can see through the abstractions of their uncles: module Where where abstract x : Nat x = 0 y : Nat y = x where x≡y : x ≡ 0 x≡y = refl Type signatures in where blocks are blocks of abstract definitions: module WherePrivate where abstract x : Nat x = proj₁ t where T = Nat × Nat t : T t = 0 , 1 p : proj₁ t ≡ 0 p = refl Note that if p
    0 码力 | 216 页 | 207.64 KB | 1 年前
    3
  • pdf文档 Agda User Manual v2.5.4.2

    in various ways, e.g. as difference of two natural numbers: module Integer where abstract = Nat × Nat 0 : 0 = 0 , 0 1 : 1 = 1 , 0 _+_ : (x y : ) → (p , n) + (p' , n') = (p + p') , (n + n') -_ : they can see through the abstractions of their uncles: module Where where abstract x : Nat x = 0 y : Nat y = x where xy : x 0 xy = refl Type signatures in where blocks are private, so it is fine in where blocks of abstract definitions: module WherePrivate where abstract x : Nat x = proj1 t where T = Nat × Nat t : T t = 0 , 1 p : proj1 t 0 p = refl Note that if p was not private, application
    0 码力 | 155 页 | 668.75 KB | 1 年前
    3
  • epub文档 Agda User Manual v2.5.4

    various ways, e.g. as difference of two natural numbers: module Integer where abstract ℤ = Nat × Nat 0ℤ : ℤ 0ℤ = 0 , 0 1ℤ : ℤ 1ℤ = 1 , 0 _+ℤ_ : (x y : ℤ) → ℤ (p , n) +ℤ (p' , n') can see through the abstractions of their uncles: module Where where abstract x : Nat x = 0 y : Nat y = x where x≡y : x ≡ 0 x≡y = refl Type signatures in where blocks are blocks of abstract definitions: module WherePrivate where abstract x : Nat x = proj₁ t where T = Nat × Nat t : T t = 0 , 1 p : proj₁ t ≡ 0 p = refl Note that if p
    0 码力 | 216 页 | 207.63 KB | 1 年前
    3
共 453 条
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 46
前往
页
相关搜索词
AgdaUserManualv26.15.4
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩