积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部后端开发(978)Java(295)Python(276)Spring(244)云计算&大数据(229)数据库(145)综合其他(120)C++(120)Julia(87)VirtualBox(85)

语言

全部英语(1315)中文(简体)(179)中文(繁体)(22)英语(10)法语(4)日语(4)zh(4)德语(1)西班牙语(1)

格式

全部PDF文档 PDF(1236)其他文档 其他(304)DOC文档 DOC(9)PPT文档 PPT(3)
 
本次搜索耗时 0.027 秒,为您找到相关结果约 1000 个.
  • 全部
  • 后端开发
  • Java
  • Python
  • Spring
  • 云计算&大数据
  • 数据库
  • 综合其他
  • C++
  • Julia
  • VirtualBox
  • 全部
  • 英语
  • 中文(简体)
  • 中文(繁体)
  • 英语
  • 法语
  • 日语
  • zh
  • 德语
  • 西班牙语
  • 全部
  • PDF文档 PDF
  • 其他文档 其他
  • DOC文档 DOC
  • PPT文档 PPT
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 3 - Learning Techniques

    Chapter 3 - Learning Techniques “The more that you read, the more things you will know. The more that you learn, the more places you'll go.” ― Dr. Seuss Model quality is an important benchmark to evaluate evaluate the performance of a deep learning model. A language translation application that uses a low quality model would struggle with consumer adoption because it wouldn’t serve its intended purpose translation accuracy would garner better consumer support. In this chapter, our focus will be on the techniques that enable us to achieve our quality goals. High quality models have an additional benefit in
    0 码力 | 56 页 | 18.93 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 6 - Advanced Learning Techniques - Technical Review

    Advanced Learning Techniques “Tell me and I forget, teach me and I may remember, involve me and I learn.” – Benjamin Franklin This chapter is a continuation of Chapter 3, where we introduced learning techniques techniques. To recap, learning techniques can help us meet our model quality goals. Techniques like distillation and data augmentation improve the model quality, without increasing the footprint of the model this chapter by presenting self-supervised learning which has been instrumental in the success of natural language models like BERT. Self-Supervised learning helps models to quickly achieve impressive
    0 码力 | 31 页 | 4.03 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 2 - Compression Techniques

    Compression Techniques “I have made this longer than usual because I have not had time to make it shorter.” Blaise Pascal In the last chapter, we discussed a few ideas to improve the deep learning efficiency efficiency. Now, we will elaborate on one of those ideas, the compression techniques. Compression techniques aim to reduce the model footprint (size, latency, memory etc.). We can reduce the model footprint gentle introduction to the idea of compression. Details of quantization and its applications in deep learning follow right after. The quantization section delves into the implementation details using code samples
    0 码力 | 33 页 | 1.96 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 5 - Advanced Compression Techniques

    Advanced Compression Techniques “The problem is that we attempt to solve the simplest questions cleverly, thereby rendering them unusually complex. One should seek the simple solution.” — Anton Pavlovich Pavlovich Chekhov In this chapter, we will discuss two advanced compression techniques. By ‘advanced’ we mean that these techniques are slightly more involved than quantization (as discussed in the second them, with an eye towards conceptual understanding as well as practically using them in your deep learning models. We start with sparsity. If your goal was to optimize your brain for storage, you can often
    0 码力 | 34 页 | 3.18 MB | 1 年前
    3
  • pdf文档 Learning Gulp

    0 码力 | 45 页 | 977.19 KB | 1 年前
    3
  • pdf文档 Machine Learning

    Machine Learning Lecture 10: Neural Networks and Deep Learning Feng Li fli@sdu.edu.cn https://funglee.github.io School of Computer Science and Technology Shandong University Fall 2018 Deep Feedforward usually a highly non-linear function • Feedforward networks are of extreme importance to machine learning practioners • The conventional neural networks (CNN) used for object recognition from photos are units), and output layer 7 / 19 Neural Feedforward Networks (Contd.) • We approximate f ∗(x) by learning f(x) from the given training data • In the output layer, f(x) ≈ y for each training data, but the
    0 码力 | 19 页 | 944.40 KB | 1 年前
    3
  • pdf文档 Learning Laravel

    0 码力 | 216 页 | 1.58 MB | 1 年前
    3
  • pdf文档 Back to Basics: Debugging Techniques

    Back to Basics: Debugging Techniques Bob Steagall CppCon 2021CppCon 2021 – Back to Basics: Debugging Techniques Copyright © 2021 Bob Steagall The Cost of Software Failures • January 2018, Tricentis’ salary -- $1.2T enterprise value lost for shareholders 2CppCon 2021 – Back to Basics: Debugging Techniques Copyright © 2021 Bob Steagall The Cost of Software Failures • Radiation overdoses from Therac-25 737 MAX MCAS system • System component design flaws 3CppCon 2021 – Back to Basics: Debugging Techniques Copyright © 2021 Bob Steagall Agenda • What are bugs? • What is debugging? • Challenges when
    0 码力 | 44 页 | 470.68 KB | 6 月前
    3
  • pdf文档 Learning Socket.IO

    0 码力 | 15 页 | 870.16 KB | 1 年前
    3
  • pdf文档 Machine Learning Pytorch Tutorial

    Machine Learning Pytorch Tutorial TA : 曾元(Yuan Tseng) 2022.02.18 Outline ● Background: Prerequisites & What is Pytorch? ● Training & Testing Neural Networks in Pytorch ● Dataset & Dataloader ● Tensors link3 2. Deep Learning Basics ■ Prof. Lee’s 1st & 2nd lecture videos from last year ■ ref: link1, link2 Some knowledge of NumPy will also be useful! What is PyTorch? ● An machine learning framework in computing with more cores for arithmetic calculations ○ See What is a GPU and do you need one in deep learning? Tensors – Gradient Calculation >>> x = torch.tensor([[1., 0.], [-1., 1.]], requires_grad=True)
    0 码力 | 48 页 | 584.86 KB | 1 年前
    3
共 1000 条
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 100
前往
页
相关搜索词
EfficientDeepLearningBookEDLChapterTechniquesAdvancedTechnicalReviewCompressionGulpMachineLaravelBacktoBasicsDebuggingSocketIOPytorchTutorial
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩