积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部后端开发(261)Python(165)Julia(87)Django(64)云计算&大数据(61)PyWebIO(52)Pandas(32)机器学习(26)数据库(23)Conda(16)

语言

全部英语(275)中文(简体)(63)中文(繁体)(10)中文(简体)(1)

格式

全部PDF文档 PDF(287)其他文档 其他(61)DOC文档 DOC(1)
 
本次搜索耗时 0.812 秒,为您找到相关结果约 349 个.
  • 全部
  • 后端开发
  • Python
  • Julia
  • Django
  • 云计算&大数据
  • PyWebIO
  • Pandas
  • 机器学习
  • 数据库
  • Conda
  • 全部
  • 英语
  • 中文(简体)
  • 中文(繁体)
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 其他文档 其他
  • DOC文档 DOC
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 机器学习课程-温州大学-numpy使用总结

    机器学习-NumPy使用总结 黄海广 副教授 2 本章目录 01 NumPy概述 02 NumPy数组(ndarry)对象 03 ufunc函数 04 NumPy的函数库 3 1.NumPy概述 01 NumPy概述 02 NumPy数组(ndarry)对象 03 ufunc函数 04 NumPy的函数库 4 NumPy(Numeric 随机数产生 ······ NumPy是什么? 5 NumPy提供了许多高级的数值编程工具,如:矩阵数据类型、矢量处 理,以及精密的运算库。专为进行严格的数字处理而产生。多为很多大 型金融公司使用,以及核心的科学计算组织如:Lawrence Livermore, NASA 用其处理一些本来使用 C++,Fortran 或 Matlab 等所做的任务。 NumPy是什么? 6 标准的P 和内存。 NumPy诞生为了弥补这些缺陷。它提供了两种基本的对象: ndarray:全称(n-dimensional array object)是储存单一数据类型的 多维数组。 ufunc:全称(universal function object)它是一种能够对数组进行处 理的函数。 NumPy的官方文档: https://docs.scipy.org/doc/numpy/reference/
    0 码力 | 49 页 | 1.52 MB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 1.0.0

    Using the Numba engine can yield significant performance gains if the apply function can operate on numpy arrays and the data set is larger (1 million rows or greater). For more details, see rolling apply extension type dedicated to string data. Previously, strings were typically stored in object-dtype NumPy arrays. (GH29975) Warning: StringDtype is currently considered experimental. The implementation and may change without warning. The 'string' extension type solves several issues with object-dtype NumPy arrays: 1. You can accidentally store a mixture of strings and non-strings in an object dtype array
    0 码力 | 3015 页 | 10.78 MB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 0.25.1

    the output for non-empty columns. Now the ‘top’ and ‘freq’ columns will always be included, with numpy.nan in the case of an empty DataFrame (GH26397) In [39]: df = pd.DataFrame({"empty_col": pd.Categorical([])}) Length: 2, dtype: object 1.2.12 Binary ufuncs on Series now align Applying a binary ufunc like numpy.power() now aligns the inputs when both are Series (GH23293). In [54]: s1 = pd.Series([1, 2, 3], Categorical.argsort() now places missing values at the end of the array, making it consistent with NumPy and the rest of pandas (GH21801). In [60]: cat = pd.Categorical(['b', None, 'a'], categories=['a'
    0 码力 | 2833 页 | 9.65 MB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 0.25.0

    the output for non-empty columns. Now the ‘top’ and ‘freq’ columns will always be included, with numpy.nan in the case of an empty DataFrame (GH26397) In [39]: df = pd.DataFrame({"empty_col": pd.Categorical([])}) Length: 2, dtype: object 1.2.12 Binary ufuncs on Series now align Applying a binary ufunc like numpy.power() now aligns the inputs when both are Series (GH23293). In [54]: s1 = pd.Series([1, 2, 3], Categorical.argsort() now places missing values at the end of the array, making it consistent with NumPy and the rest of pandas (GH21801). In [60]: cat = pd.Categorical(['b', None, 'a'], categories=['a'
    0 码力 | 2827 页 | 9.62 MB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 0.24.0

    \\\\\\\\\\Out[20]: ˓→139878052163872 If you need an actual NumPy array, use Series.to_numpy() or Index.to_numpy(). In [21]: idx.to_numpy() Out[21]: array([Period('2000-01-01', 'D'), Period('2000-01-02' Period('2000-01-03', 'D'), Period('2000-01-04', 'D')], dtype=object) In [22]: pd.Series(idx).to_numpy() \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ dtype=object) For Series and Indexes backed by normal NumPy arrays, Series.array will return a new arrays. PandasArray, which is a thin (no-copy) wrapper around a numpy.ndarray. PandasArray isn’t especially useful
    0 码力 | 2973 页 | 9.90 MB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 1.3.2

    . . . . . . . . . . . . . . . . . . . . 419 2.5.16 Setting with enlargement conditionally using numpy() . . . . . . . . . . . . . . . . . . . 423 2.5.17 The query() Method . . . . . . . . . . . . . and NA type promotions . . . . . . . . . . . . . . . . . . . . . . . . 935 2.26.5 Differences with NumPy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 938 2.26.6 Thread-safety 3.8, and 3.9. Installing pandas Installing with Anaconda Installing pandas and the rest of the NumPy and SciPy stack can be a little difficult for inexperienced users. The simplest way to install not
    0 码力 | 3509 页 | 14.01 MB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 1.3.3

    . . . . . . . . . . . . . . . . . . . . 438 2.5.16 Setting with enlargement conditionally using numpy() . . . . . . . . . . . . . . . . . . . . 442 2.5.17 The query() Method . . . . . . . . . . . . and NA type promotions . . . . . . . . . . . . . . . . . . . . . . . . 975 2.26.5 Differences with NumPy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 978 2.26.6 Thread-safety 3.8, and 3.9. Installing pandas Installing with Anaconda Installing pandas and the rest of the NumPy and SciPy stack can be a little difficult for inexperienced users. The simplest way to install not
    0 码力 | 3603 页 | 14.65 MB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 1.3.4

    . . . . . . . . . . . . . . . . . . . . 438 2.5.16 Setting with enlargement conditionally using numpy() . . . . . . . . . . . . . . . . . . . . 442 2.5.17 The query() Method . . . . . . . . . . . . and NA type promotions . . . . . . . . . . . . . . . . . . . . . . . . 976 2.26.5 Differences with NumPy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 979 2.26.6 Thread-safety 3.8, and 3.9. Installing pandas Installing with Anaconda Installing pandas and the rest of the NumPy and SciPy stack can be a little difficult for inexperienced users. The simplest way to install not
    0 码力 | 3605 页 | 14.68 MB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 1.1.1

    and NA type promotions . . . . . . . . . . . . . . . . . . . . . . . . 873 2.24.4 Differences with NumPy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 875 2.24.5 Thread-safety 3.7, and 3.8. Installing pandas Installing with Anaconda Installing pandas and the rest of the NumPy and SciPy stack can be a little difficult for inexperienced users. The simplest way to install not not only pandas, but Python and the most popular packages that make up the SciPy stack (IPython, NumPy, Matplotlib, ...) is with Anaconda, a cross-platform (Linux, Mac OS X, Windows) Python distribution
    0 码力 | 3231 页 | 10.87 MB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 1.1.0

    and NA type promotions . . . . . . . . . . . . . . . . . . . . . . . . 873 2.24.4 Differences with NumPy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 875 2.24.5 Thread-safety 3.7, and 3.8. Installing pandas Installing with Anaconda Installing pandas and the rest of the NumPy and SciPy stack can be a little difficult for inexperienced users. The simplest way to install not not only pandas, but Python and the most popular packages that make up the SciPy stack (IPython, NumPy, Matplotlib, ...) is with Anaconda, a cross-platform (Linux, Mac OS X, Windows) Python distribution
    0 码力 | 3229 页 | 10.87 MB | 1 年前
    3
共 349 条
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 35
前往
页
相关搜索词
机器学习课程温州大学numpy使用总结pandaspowerfulPythondataanalysistoolkit1.00.250.241.31.1
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩