积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部后端开发(434)综合其他(363)Weblate(288)Java(201)云计算&大数据(157)Spring(151)数据库(127)VirtualBox(105)Python(101)系统运维(75)

语言

全部英语(927)中文(简体)(198)中文(繁体)(11)英语(5)日语(4)韩语(3)西班牙语(2)葡萄牙语(1)ro(1)

格式

全部PDF文档 PDF(862)其他文档 其他(289)DOC文档 DOC(5)PPT文档 PPT(1)
 
本次搜索耗时 0.484 秒,为您找到相关结果约 1000 个.
  • 全部
  • 后端开发
  • 综合其他
  • Weblate
  • Java
  • 云计算&大数据
  • Spring
  • 数据库
  • VirtualBox
  • Python
  • 系统运维
  • 全部
  • 英语
  • 中文(简体)
  • 中文(繁体)
  • 英语
  • 日语
  • 韩语
  • 西班牙语
  • 葡萄牙语
  • ro
  • 全部
  • PDF文档 PDF
  • 其他文档 其他
  • DOC文档 DOC
  • PPT文档 PPT
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Cardinality and frequency estimation - CS 591 K1: Data Stream Processing and Analytics Spring 2020

    and Analytics Vasiliki (Vasia) Kalavri
 vkalavri@bu.edu Spring 2020 4/23: Cardinality and frequency estimation ??? Vasiliki Kalavri | Boston University 2020 Counting distinct elements 2 ??? probability • Counter overestimation is almost certain for very large data streams with high-frequency elements Counting Bloom Filter ??? Vasiliki Kalavri | Boston University 2020 20 • A space-efficient 6 2 3 2 2 9 7 3 0 5 8 5 0 9 0 … ??? Vasiliki Kalavri | Boston University 2020 23 Estimating frequency 0 0 0 6 9 3 3 1 5 0 0 3 8 2 7 9 m counters h1 h2 hp 3 0 0 3 0 5 8 2 0 0 2 9 2 4 5 2 7 6 2
    0 码力 | 69 页 | 630.01 KB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 1.5.0rc0

    columns, as in an SQL table or Excel spreadsheet • Ordered and unordered (not necessarily fixed-frequency) time series data. 12 Chapter 1. Getting started pandas: powerful Python data analysis toolkit from the ultrafast HDF5 format • Time series-specific functionality: date range generation and frequency conversion, moving window statistics, date shifting, and lagging. Many of these principles are strings is provided in the section on time series indexing. Resample a time series to another frequency Aggregate the current hourly time series values to the monthly maximum value in each of the stations
    0 码力 | 3943 页 | 15.73 MB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 0.14.0

    columns, as in an SQL table or Excel spreadsheet • Ordered and unordered (not necessarily fixed-frequency) time series data. • Arbitrary matrix data (homogeneously typed or heterogeneous) with row and from the ultrafast HDF5 format • Time series-specific functionality: date range generation and frequency conversion, moving window statistics, moving window linear regressions, date shifting and lagging array of whether the timestamp(s) are at the start/end of the month/quarter/year defined by the frequency of the DateTimeIndex / Timestamp (GH4565, GH6998) • Local variable usage has changed in pandas
    0 码力 | 1349 页 | 7.67 MB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 0.15

    DateArray properties and functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178 3.3 Frequency conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 544 20.4 Frequency Conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 545 columns, as in an SQL table or Excel spreadsheet • Ordered and unordered (not necessarily fixed-frequency) time series data. • Arbitrary matrix data (homogeneously typed or heterogeneous) with row and
    0 码力 | 1579 页 | 9.15 MB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 0.15.1

    DateArray properties and functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172 3.3 Frequency conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 534 20.4 Frequency Conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 535 columns, as in an SQL table or Excel spreadsheet • Ordered and unordered (not necessarily fixed-frequency) time series data. • Arbitrary matrix data (homogeneously typed or heterogeneous) with row and
    0 码力 | 1557 页 | 9.10 MB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 0.12

    columns, as in an SQL table or Excel spreadsheet • Ordered and unordered (not necessarily fixed-frequency) time series data. • Arbitrary matrix data (homogeneously typed or heterogeneous) with row and from the ultrafast HDF5 format • Time series-specific functionality: date range generation and frequency conversion, moving window statistics, moving window linear regressions, date shifting and lagging warn with a AttributeConflictWarning if you are attempting to append an index with a different frequency than the existing, or attempting to append an index with a different name than the existing – support
    0 码力 | 657 页 | 3.58 MB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 0.13.1

    columns, as in an SQL table or Excel spreadsheet • Ordered and unordered (not necessarily fixed-frequency) time series data. • Arbitrary matrix data (homogeneously typed or heterogeneous) with row and from the ultrafast HDF5 format • Time series-specific functionality: date range generation and frequency conversion, moving window statistics, moving window linear regressions, date shifting and lagging divided by another timedelta64[ns] object, or astyped to yield a float64 dtyped Series. This is frequency conversion. See the docs for the docs. In [69]: from datetime import timedelta In [70]: td =
    0 码力 | 1219 页 | 4.81 MB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 0.17.0

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 642 21.4 Frequency Conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 643 columns, as in an SQL table or Excel spreadsheet • Ordered and unordered (not necessarily fixed-frequency) time series data. • Arbitrary matrix data (homogeneously typed or heterogeneous) with row and from the ultrafast HDF5 format • Time series-specific functionality: date range generation and frequency conversion, moving window statistics, moving window linear regressions, date shifting and lagging
    0 码力 | 1787 页 | 10.76 MB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 0.21.1

    methods for dt accessor . . . . . . . . . . . . . . . . . . . . . . . . . 177 1.12.1.5 Period Frequency Enhancement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179 1.12.1.6 Support for SAS Timestamps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 847 19.4.1 Custom Frequency Ranges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 849 19.5 Timestamp Lagging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 874 19.9.2 Frequency Conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 875 19.9.3
    0 码力 | 2207 页 | 8.59 MB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 1.0.0

    MultiIndex name orders. (GH25760, GH28956) • Bug Series.pct_change() where supplying an anchored frequency would throw a ValueError (GH28664) 1.9. Bug fixes 31 pandas: powerful Python data analysis toolkit columns, as in an SQL table or Excel spreadsheet • Ordered and unordered (not necessarily fixed-frequency) time series data. • Arbitrary matrix data (homogeneously typed or heterogeneous) with row and from the ultrafast HDF5 format • Time series-specific functionality: date range generation and frequency conversion, moving window statistics, date shifting and lagging. Many of these principles are here
    0 码力 | 3015 页 | 10.78 MB | 1 年前
    3
共 1000 条
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 100
前往
页
相关搜索词
CardinalityandfrequencyestimationCS591K1DataStreamProcessingAnalyticsSpring2020pandaspowerfulPythondataanalysistoolkit1.50rc00.140.150.120.130.170.211.0
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩