积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部后端开发(1649)Python(488)综合其他(487)Java(347)Weblate(302)云计算&大数据(295)Spring(282)C++(246)数据库(230)系统运维(118)

语言

全部英语(2234)中文(简体)(443)中文(繁体)(36)日语(20)法语(17)德语(15)韩语(15)俄语(14)西班牙语(13)英语(12)

格式

全部PDF文档 PDF(2166)其他文档 其他(611)TXT文档 TXT(33)PPT文档 PPT(13)DOC文档 DOC(9)
 
本次搜索耗时 0.122 秒,为您找到相关结果约 1000 个.
  • 全部
  • 后端开发
  • Python
  • 综合其他
  • Java
  • Weblate
  • 云计算&大数据
  • Spring
  • C++
  • 数据库
  • 系统运维
  • 全部
  • 英语
  • 中文(简体)
  • 中文(繁体)
  • 日语
  • 法语
  • 德语
  • 韩语
  • 俄语
  • 西班牙语
  • 英语
  • 全部
  • PDF文档 PDF
  • 其他文档 其他
  • TXT文档 TXT
  • PPT文档 PPT
  • DOC文档 DOC
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Andreas Weis - Quickly Estimating Powers of Two

    1/15 Quickly Estimating Powers-of-Two Andreas Weis Woven Planet CppCon 20212/15 About me ComicSansMS @DerGhulbus Co-organizer of the Munich C++ User Group Currently working as a Runtime Framework 223 =? 236 =? 2128 =?4/15 Small Powers of Two 21 = 2 22 = 4 23 = 8 24 = 16 25 = 32 26 = 64 27 = 128 28 = 256 29 = 5125/15 Small Powers of Two 21 = 2 22 = 4 23 = 8 24 = 16 25 = 32 26 = 5126/15 Small Powers of Two 21 = 2 22 = 4 23 = 8 24 = 16 25 = 32 26 = 64 27 = 128 28 = 256 (Number of states in an 8 bit char) 29 = 5127/15 Small Powers of Two 21 = 2 22 = 4 23 = 8 ⋄ 24
    0 码力 | 56 页 | 326.32 KB | 5 月前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 0.7.1

    sets. The data actually need not be labeled at all to be placed into a pandas data structure The two primary data structures of pandas, Series (1-dimensional) and DataFrame (2-dimensional), handle the index columns • Added nrows, chunksize, and iterator arguments to read_csv and read_table. The last two return a new TextParser class capable of lazily iterating through chunks of a flat file (GH242) • instance methods isnull and notnull to Series (PR209, GH203) • Added Series.align method for aligning two series with choice of join method (ENH56) • Added method get_level_values to MultiIndex (IS188) •
    0 码力 | 281 页 | 1.45 MB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 0.7.2

    sets. The data actually need not be labeled at all to be placed into a pandas data structure The two primary data structures of pandas, Series (1-dimensional) and DataFrame (2-dimensional), handle the Release 0.7.2 • Added nrows, chunksize, and iterator arguments to read_csv and read_table. The last two return a new TextParser class capable of lazily iterating through chunks of a flat file (GH242) • instance methods isnull and notnull to Series (PR209, GH203) • Added Series.align method for aligning two series with choice of join method (ENH56) • Added method get_level_values to MultiIndex (IS188) •
    0 码力 | 283 页 | 1.45 MB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 0.7.3

    sets. The data actually need not be labeled at all to be placed into a pandas data structure The two primary data structures of pandas, Series (1-dimensional) and DataFrame (2-dimensional), handle the ’bar’, ’foo’, ’bar’, .....: ’foo’, ’bar’, ’foo’, ’foo’], .....: ’B’ : [’one’, ’one’, ’two’, ’three’, .....: ’two’, ’two’, ’one’, ’three’], .....: ’C’ : np.random.randn(8), ’D’ : np.random.randn(8)}) In 541264 2.801614 1 bar one -0.722290 1.669853 2 foo two -0.478428 0.254501 3 bar three 2.850221 -0.682682 4 foo two -0.350942 -0.697727 5 bar two -1.581790 -1.092094 6 foo one 1.113061 0.321042 7
    0 码力 | 297 页 | 1.92 MB | 1 年前
    3
  • mobi文档 Go 101 (Golang 101) v1.21.0

    why did you plan to write this book? At about July 2016, after (not very intensively) using Go for two years, I felt that Go is a simple language and I had mastered Go programming. At that time, I had collected features which are usually only available in dynamic script languages. It is hard to combine these two kinds into one language, but Go did it. In other words, Go owns both the strictness of static languages languages and the flexibility of dynamic languages. I can't say there are not any compromises between the two, but the effect of the compromises is much weaker than the benefits of the combination in Go. Readability
    0 码力 | 610 页 | 945.17 KB | 1 年前
    3
  • epub文档 Go 101 (Golang 101) v1.21.0

    why did you plan to write this book? At about July 2016, after (not very intensively) using Go for two years, I felt that Go is a simple language and I had mastered Go programming. At that time, I had features which are usually only available in dynamic script languages. It is hard to combine these two kinds into one language, but Go did it. In other words, Go owns both the strictness of static languages languages and the flexibility of dynamic languages. I can't say there are not any compromises between the two, but the effect of the compromises is much weaker than the benefits of the combination in Go. Readability
    0 码力 | 880 页 | 833.34 KB | 1 年前
    3
  • pdf文档 Go 101 (Golang 101) v1.21.0

    why did you plan to write this book? At about July 2016, after (not very intensively) using Go for two years, I felt that Go is a simple language and I had mastered Go programming. At that time, I had available in dynamic script languages. It is hard to combine these §2. An Introduction of Go 10 two kinds into one language, but Go did it. In other words, Go owns both the strictness of static languages languages and the flexibility of dynamic languages. I can't say there are not any compromises between the two, but the effect of the compromises is much weaker than the benefits of the combination in Go. Readability
    0 码力 | 630 页 | 3.77 MB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 0.12

    sets. The data actually need not be labeled at all to be placed into a pandas data structure The two primary data structures of pandas, Series (1-dimensional) and DataFrame (2-dimensional), handle the appending tables. In [21]: index = MultiIndex(levels=[[’foo’, ’bar’, ’baz’, ’qux’], ....: [’one’, ’two’, ’three’]], ....: labels=[[0, 0, 0, 1, 1, 2, 2, 3, 3, 3], ....: [0, 1, 2, 0, 1, 1, 2, 0, 1, 2]] 410679 -0.938918 -1.452154 two 0.835328 -0.698888 0.766402 three 0.536443 -0.147986 0.339040 bar one -0.195183 -1.332316 1.684194 two -0.137506 2.138582 0.118417 baz two 0.517623 1.646523 2.036856
    0 码力 | 657 页 | 3.58 MB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 0.25

    William Ayd • jbrockmendel {{ header }} 4 Chapter 1. Whats new in 0.25.2 (October 15, 2019) CHAPTER TWO INSTALLATION The easiest way to install pandas is to install it as part of the Anaconda distribution sets. The data actually need not be labeled at all to be placed into a pandas data structure The two primary data structures of pandas, Series (1-dimensional) and DataFrame (2-dimensional), handle the Using the isin() method for filtering: In [41]: df2 = df.copy() In [42]: df2['E'] = ['one', 'one', 'two', 'three', 'four', 'three'] In [43]: df2 Out[43]: A B C D E 2013-01-01 1.832747 1.515386 1.793547
    0 码力 | 698 页 | 4.91 MB | 1 年前
    3
  • mobi文档 Computer Programming with the Nim Programming Language

    screen? And can you guess what the Nim statement 'echo 1, 2' would print? Are you sure that the two arguments provided to the echo statement are separated with a space? I just tested it. I run the circuits, can perform very basic mathematical and logical operations on numbers, such as adding two numbers or determining whether one number is larger or smaller than another. Most computer CPUs can Before use, each partition is generally formatted, at which point a file system (FS) is created. These two steps create an internal structure on the storage device, which allows us to store and retrieve individual
    0 码力 | 865 页 | 7.45 MB | 1 年前
    3
共 1000 条
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 100
前往
页
相关搜索词
AndreasWeisQuicklyEstimatingPowersofTwopandaspowerfulPythondataanalysistoolkit0.7Go101Golangv121.00.120.25ComputerProgrammingwiththeNimLanguage
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩