积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部后端开发(87)数据库(48)PostgreSQL(40)其它语言(24)Python(17)区块链(14)Idris(9)数据库中间件(8)云计算&大数据(8)Lean(8)

语言

全部英语(133)中文(简体)(7)韩语(2)德语(1)西班牙语(1)法语(1)日语(1)俄语(1)

格式

全部PDF文档 PDF(127)其他文档 其他(20)
 
本次搜索耗时 0.033 秒,为您找到相关结果约 147 个.
  • 全部
  • 后端开发
  • 数据库
  • PostgreSQL
  • 其它语言
  • Python
  • 区块链
  • Idris
  • 数据库中间件
  • 云计算&大数据
  • Lean
  • 全部
  • 英语
  • 中文(简体)
  • 韩语
  • 德语
  • 西班牙语
  • 法语
  • 日语
  • 俄语
  • 全部
  • PDF文档 PDF
  • 其他文档 其他
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Theorem Proving in Lean Release 3.23.0

    Theorem Proving in Lean Release 3.23.0 Jeremy Avigad, Leonardo de Moura, and Soonho Kong Apr 25, 2023 CONTENTS 1 Introduction 1 1.1 Computers and Theorem Proving . . . . . . . . . . . . . . . . . . . . . . . . . 163 Bibliography 167 iii iv CHAPTER ONE INTRODUCTION 1.1 Computers and Theorem Proving Formal verification involves the use of logical and computational methods to establish claims correctness becomes a form of theorem proving. Conversely, the proof of a mathematical theorem may require a lengthy computation, in which case verifying the truth of the theorem requires verifying that the
    0 码力 | 173 页 | 777.93 KB | 1 年前
    3
  • pdf文档 Why Loops End

    before the loop, the loop must end.if ( b <= e ) { counting_theorem( b, e ); int i = b; while ( i != e ) ++i; } void counting_theorem( const int b, const int e ) interface { extend_stability b ( i != e ) { claim i < e; ++i; } }if ( b <= e ) { counting_theorem( b, e ); int i = b; while ( i != e ) ++i; } void counting_theorem( const int b, const int e ) interface { extend_stability b ( i != e ) { claim i < e; ++i; } }if ( b <= e ) { counting_theorem( b, e ); int i = b; while ( i != e ) ++i; } void counting_theorem( const int b, const int e ) interface { extend_stability b
    0 码力 | 134 页 | 1.30 MB | 5 月前
    3
  • pdf文档 An Introduction to Lean

    . . 35 3.6 An Example: Abstract Syntax . . . . . . . . . . . . . . . . . . . . . . . . . 36 4 Theorem Proving in Lean 38 4.1 Assertions in Dependent Type Theory . . . . . . . . . . . . . . . . . . programs can be written in Lean and run by the bytecode interpreter. In fact, a full-blown resolution theorem prover for Lean has been written in Lean itself. You can profile your code by setting the relevant expressed, and any theorem that can be proved using conventional mathematical means can be carried out formally, with enough effort. Here is a proof that the sum of two even numbers is even: theorem even_add :
    0 码力 | 48 页 | 191.92 KB | 1 年前
    3
  • pdf文档 The Lean Reference Manual Release 3.3.0

    directory for the project. 1.4 Using the Package Manager leanpkg is the package manager for the Lean theorem prover. It downloads dependencies and manages what modules you can import in your Lean files. This or structure declaration. Similarly, objects can be defined in various ways, such as using def, theorem, or the equation compiler. See Chapter 4 for more information. Writing an expression (t : α) forces Implicit Arguments When declaring arguments to defined objects in Lean (for example, with def, theorem, constant, inductive, or structure; see Chapter 4) or when declaring variables and parameters in
    0 码力 | 67 页 | 266.23 KB | 1 年前
    3
  • pdf文档 The Hitchhiker’s Guide to Logical Verification

    assis- tants, or interactive theorem provers, but a mischievous student coined the phase “proof-preventing beasts,” and dictation software occasionally misunderstands “theorem prover” as “fear improver.” ” Consider yourself warned. Rigorous and Formal Proofs Interactive theorem proving has its own terminol- ogy, already starting with the notion of “proof.” A formal proof is a logical argu- ment expressed ics have been the proof of the four-color theorem by Gonthier et al. [8], the proof 1https://www.scottaaronson.com/teaching.pdf vii of the odd-order theorem by Gonthier et al. [9], and the proof of the
    0 码力 | 215 页 | 1.95 MB | 1 年前
    3
  • pdf文档 Programming in Lean Release 3.4.2

    . . . . . 43 i ii CHAPTER ONE INTRODUCTION This tutorial can be viewed as a companion to Theorem Proving in Lean, which presents Lean as a system for building mathematical libraries and stating ” or ff, for “false.” This provides another perspective on Lean: instead of thinking of it as a theorem prover whose language just happens to have a computational interpretation, think of it as a programming tour of some of the terms we can write in Lean. For a more detailed and exhaustive account, see Theorem Proving in Lean. 2.1 Some Basic Types In Lean: • #check can be used a check the type of an expression
    0 码力 | 51 页 | 220.07 KB | 1 年前
    3
  • pdf文档 Lecture 5: Gaussian Discriminant Analysis, Naive Bayes

    distributions Joint probability distribution Independence Conditional probability distribution Bayes’ Theorem ... ... Feng Li (SDU) GDA, NB and EM September 27, 2023 3 / 122 Sample Space, Events and Probability =y(x)dx P(Y = y) = pY (y) Feng Li (SDU) GDA, NB and EM September 27, 2023 16 / 122 Bayes’ Theorem Bayes’ theorem (or Bayes’ rule) describes the probability of an event, based on prior knowledge of conditions A)P(A) P(B) In the Bayesian interpretation, probability measures a “degree of be- lief”, and Bayes’ theorem links the degree of belief in a proposition before and after accounting for evidence. For proposition
    0 码力 | 122 页 | 1.35 MB | 1 年前
    3
  • pdf文档 Lecture Notes on Support Vector Machine

    thus is a concave function regardless of the original problem; iii) G can be −∞ for some α and β Theorem 1. Lower Bounds Property: If α ⪰ 0, then G(α, β ) ≤ p∗ where p∗ is the optimal value of the (original) We now choose the minimizer of f(˜ω) over all feasible ˜ω’s to get p∗ ≥ G(α, β ). It is shown by Theorem 1 that, the Lagrange dual function provides a non-trivial lower bound to the primal optimization Complementary Slackness Let ω∗ be a primal optimal point and (α∗, β ∗) be a dual optimal point. Theorem 2. Complementary Slackness: If strong duality holds, then α∗ i gi(ω∗) = 0 (16) for ∀i = 1, 2, ·
    0 码力 | 18 页 | 509.37 KB | 1 年前
    3
  • pdf文档 The Idris Tutorial Version 0.9.18

    with rule — matching intermediate values . . . . . . . . . . . . . . . . . . . . . . . . . . 39 9 Theorem Proving 41 9.1 Equality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . gives a ghci style interface which allows evaluation of, as well as type checking of, expressions; theorem proving, compilation; editing; and various other operations. The command :? gives a list of supported Definitions to complete the definition of parity. 40 Chapter 8. Views and the “with” rule CHAPTER 9 Theorem Proving 9.1 Equality Idris allows propositional equalities to be declared, allowing theorems about
    0 码力 | 69 页 | 316.20 KB | 1 年前
    3
  • pdf文档 The Idris Tutorial Version 0.11

    Idris Packages 35 8 Example: The Well-Typed Interpreter 37 9 Views and the “with” rule 41 10 Theorem Proving 43 11 Provisional Definitions 47 12 Interactive Editing 51 13 Syntax Extensions 55 14 gives a ghci style interface which allows evaluation of, as well as type checking of, expressions; theorem proving, compilation; editing; and various other operations. The command :? gives a list of supported Definitions to complete the definition of parity. 42 Chapter 9. Views and the “with” rule CHAPTER 10 Theorem Proving 10.1 Equality Idris allows propositional equalities to be declared, allowing theorems about
    0 码力 | 71 页 | 314.20 KB | 1 年前
    3
共 147 条
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 15
前往
页
相关搜索词
TheoremProvinginLeanRelease3.23WhyLoopsEndAnIntroductiontoTheReferenceManual3.3HitchhikerGuideLogicalVerificationProgramming3.4LectureGaussianDiscriminantAnalysisNaiveBayesNotesonSupportVectorMachineIdrisTutorialVersion0.9180.11
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩