积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部云计算&大数据(45)Pandas(29)机器学习(16)数据库(2)综合其他(2)ClickHouse(2)人工智能(1)GIMP(1)

语言

全部英语(40)中文(简体)(9)

格式

全部PDF文档 PDF(49)
 
本次搜索耗时 0.023 秒,为您找到相关结果约 49 个.
  • 全部
  • 云计算&大数据
  • Pandas
  • 机器学习
  • 数据库
  • 综合其他
  • ClickHouse
  • 人工智能
  • GIMP
  • 全部
  • 英语
  • 中文(简体)
  • 全部
  • PDF文档 PDF
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Lecture 4: Regularization and Bayesian Statistics

    Lecture 4: Regularization and Bayesian Statistics Feng Li Shandong University fli@sdu.edu.cn September 20, 2023 Feng Li (SDU) Regularization and Bayesian Statistics September 20, 2023 1 / 25 Lecture Lecture 4: Regularization and Bayesian Statistics 1 Overfitting Problem 2 Regularized Linear Regression 3 Regularized Logistic Regression 4 MLE and MAP Feng Li (SDU) Regularization and Bayesian Statistics Overfitting Problem y = θ0 + θ1x y = θ0 + θ1x + θ2x2 y = θ0 + θ1x + · · · + θ5x5 Feng Li (SDU) Regularization and Bayesian Statistics September 20, 2023 3 / 25 Overfitting Problem (Contd.) Underfitting
    0 码力 | 25 页 | 185.30 KB | 1 年前
    3
  • pdf文档 深度学习与PyTorch入门实战 - 33. regularization

    Regularization 主讲人:龙良曲 Occam's Razor ▪ More things should not be used than are necessary. Reduce Overfitting ▪ More data ▪ Constraint model complexity ▪ shallow ▪ regularization ▪ Dropout ▪ Data ▪ Early Stopping Regularization Enforce Weights close to 0 Weight Decay Intuition How ▪ L1-regularization ▪ L2-regularization lambda L2-regularization L1-regularization 下一课时 动量与学习率衰 减 Thank
    0 码力 | 10 页 | 952.77 KB | 1 年前
    3
  • pdf文档 keras tutorial

    layer, etc., Keras model and layer access Keras modules for activation function, loss function, regularization function, etc., Using Keras model, Keras Layer, and Keras modules, any ANN algorithm (CNN, RNN penalties on the layer parameter during optimization. Keras regularization module provides below functions to set penalties on the layer. Regularization applies per-layer basis only. Keras 35 L1 Regularizer It provides L1 based regularization. from keras.models import Sequential from keras.layers import Activation, Dense from keras import regularizers my_regularizer = regularizers
    0 码力 | 98 页 | 1.57 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 6 - Advanced Learning Techniques - Technical Review

    to how label smoothing can help us avoid overfitting. Label Smoothing Label smoothing is a regularization method that helps reduce the overfitting we might see with our models where the model predicts way too noisy for the model to learn anything. You should treat label smoothing as yet another regularization technique. In fact this paper17 goes into details about when label smoothing helps. The original optimizer should prefer a flatter minima over a steeper minima. This idea is intuitively analogous to regularization where we prefer to find solutions with model parameters having smaller absolute values due to
    0 码力 | 31 页 | 4.03 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 3 - Learning Techniques

    smaller footprints. In the first chapter, we briefly introduced learning techniques such as regularization, dropout, data augmentation, and distillation to improve quality. These techniques can boost namely data augmentation and distillation, to discuss in this chapter. This is because, firstly, regularization and dropout are fairly straight-forward to enable in any modern deep learning framework. Secondly sections are sampled from a probability distribution as follows: 10 Yun, Sangdoo, et al. "Cutmix: Regularization strategy to train strong classifiers with localizable features." Proceedings of the IEEE/CVF
    0 码力 | 56 页 | 18.93 MB | 1 年前
    3
  • pdf文档 Lecture 1: Overview

    algorithms in machine learning. The topics include linear regression, logistic re- gression, regularization, Gaussian discriminant analysis, Naive Bayes, EM algorithm, SVM, K-means, factor analysis, PCA we have very well, but do poorly on new data (poor generalization ability). Cross-validation, regularization, Reducing dimensionality is another possibility. It is apparent that things become simpler
    0 码力 | 57 页 | 2.41 MB | 1 年前
    3
  • pdf文档 深度学习与PyTorch入门实战 - 44. 数据增强

    The key to prevent Overfitting Sample more data? Limited Data ▪ Small network capacity ▪ Regularization ▪ Data argumentation Recap Data argumentation ▪ Flip ▪ Rotate ▪ Random Move & Crop ▪ GAN
    0 码力 | 18 页 | 1.56 MB | 1 年前
    3
  • pdf文档 深度学习与PyTorch入门实战 - 35. Early-stopping-Dropout

    主讲人:龙良曲 Tricks ▪ Early Stopping ▪ Dropout ▪ Stochastic Gradient Descent Early Stopping ▪ Regularization How-To ▪ Validation set to select parameters ▪ Monitor validation performance ▪ Stop at the
    0 码力 | 16 页 | 1.15 MB | 1 年前
    3
  • pdf文档 深度学习与PyTorch入门实战 - 56. 深度学习:GAN

    Least Cost among plans How to compute Wasserstein Distance 1-Lipschitz function WGAN Sort of Regularization WGAN-Gradient Penalty More stable Training Progress Indicator Thank You.
    0 码力 | 42 页 | 5.36 MB | 1 年前
    3
  • pdf文档 机器学习课程-温州大学-05深度学习-深度学习实践

    到更多更有效的特征,减小噪声的影响。 2.降维 即丢弃一些不能帮助我们正确预测的特征。可以是手工选择保留哪些特征,或者使用一 些模型选择的算法来帮忙(例如PCA)。 3.正则化 正则化(regularization)的技术,保留所有的特征,但是减少参数的大小(magnitude) ,它可以改善或者减少过拟合问题。 4.集成学习方法 集成学习是把多个模型集成在一起,来降低单一模型的过拟合风险。
    0 码力 | 19 页 | 1.09 MB | 1 年前
    3
共 49 条
  • 1
  • 2
  • 3
  • 4
  • 5
前往
页
相关搜索词
LectureRegularizationandBayesianStatistics深度学习PyTorch入门实战33regularizationkerastutorialEfficientDeepLearningBookEDLChapterAdvancedTechniquesTechnicalReviewOverview44数据增强35EarlystoppingDropout56GAN机器课程温州大学05实践
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩