积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部后端开发(521)Python(268)云计算&大数据(199)VirtualBox(84)数据库(83)C++(83)Conan(74)Jupyter(62)Julia(57)Scrapy(54)

语言

全部英语(785)中文(简体)(49)中文(繁体)(20)英语(2)德语(1)法语(1)日语(1)韩语(1)

格式

全部PDF文档 PDF(654)其他文档 其他(172)TXT文档 TXT(34)DOC文档 DOC(1)
 
本次搜索耗时 0.084 秒,为您找到相关结果约 861 个.
  • 全部
  • 后端开发
  • Python
  • 云计算&大数据
  • VirtualBox
  • 数据库
  • C++
  • Conan
  • Jupyter
  • Julia
  • Scrapy
  • 全部
  • 英语
  • 中文(简体)
  • 中文(繁体)
  • 英语
  • 德语
  • 法语
  • 日语
  • 韩语
  • 全部
  • PDF文档 PDF
  • 其他文档 其他
  • TXT文档 TXT
  • DOC文档 DOC
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Lecture Notes on Linear Regression

    Lecture Notes on Linear Regression Feng Li fli@sdu.edu.cn Shandong University, China 1 Linear Regression Problem In regression problem, we aim at predicting a continuous target value given an input n-dimensional feature vector is denoted by x 2 Rn, while y 2 R is the output variable. In linear regression models, the hypothesis function is defined by h✓(x) = ✓nxn + ✓n�1xn�1 + · · · + ✓1x1 + ✓0 Geometrically i=1 ⇣ h✓(x(i)) � y(i)⌘2 Our linear regression problem can be formulated as min ✓ J(✓) = 1 2 m X i=1 ⇣ ✓T x(i) � y(i)⌘2 1 Figure 1: 3D linear regression. Specifically, we aim at minimizing J(✓)
    0 码力 | 6 页 | 455.98 KB | 1 年前
    3
  • pdf文档 Experiment 1: Linear Regression

    Experiment 1: Linear Regression August 27, 2018 1 Description This first exercise will give you practice with linear regression. These exercises have been extensively tested with Matlab, but they should option in the installer, and available for Linux from Octave-Forge ). 2 Linear Regression Recall that the linear regression model is hθ(x) = θT x = n � j=0 θjxj, (1) where θ is the parameter which we intercept item x0 = 1. Therefore, the resulting feature vector is (n + 1)-dimensional. 1 3 2D Linear Regression We start a very simple case where n = 1. Download data1.zip, and extract the files (ex1x.dat and
    0 码力 | 7 页 | 428.11 KB | 1 年前
    3
  • pdf文档 Lecture 2: Linear Regression

    Lecture 2: Linear Regression Feng Li Shandong University fli@sdu.edu.cn September 13, 2023 Feng Li (SDU) Linear Regression September 13, 2023 1 / 31 Lecture 2: Linear Regression 1 Supervised Learning: Learning: Regression and Classification 2 Linear Regression 3 Gradient Descent Algorithm 4 Stochastic Gradient Descent 5 Revisiting Least Square 6 A Probabilistic Interpretation to Linear Regression Feng Feng Li (SDU) Linear Regression September 13, 2023 2 / 31 Supervised Learning Regression: Predict a continuous value Classification: Predict a discrete value, the class Living area (feet2) Price (1000$s)
    0 码力 | 31 页 | 608.38 KB | 1 年前
    3
  • pdf文档 Lecture 3: Logistic Regression

    Lecture 3: Logistic Regression Feng Li Shandong University fli@sdu.edu.cn September 20, 2023 Feng Li (SDU) Logistic Regression September 20, 2023 1 / 29 Lecture 3: Logistic Regression 1 Classification Classification 2 Logistic Regression 3 Newton’s Method 4 Multiclass Classification Feng Li (SDU) Logistic Regression September 20, 2023 2 / 29 Classification Classification problems Email: Spam / Not Spam? Class” (e.g., benign tumor) 1 : “Positive Class” (e.g., malignant tumor) Feng Li (SDU) Logistic Regression September 20, 2023 3 / 29 Warm-Up What if applying linear regress to classification? Tumor Size
    0 码力 | 29 页 | 660.51 KB | 1 年前
    3
  • pdf文档 Continuous Regression Testing for Safer and Faster Refactoring

    1 Aurora InnovationContinuous Regression Testing for Safer and Faster Refactoring Pejman Ghorbanzade Aurora Innovation3 Aurora Innovation Engineers spend 17 hours per week maintaining software. *Stripe is continuous regression testing How does regression testing work in practice How to build a regression testing system Going beyond �nding behavioral regressions How to use regression testing effectively "Write tests. Not too many. Mostly integration." - Guillermo Rauch17 Aurora Innovation Continuous regression testing Continuously verifying that the software works as well as before, during the development
    0 码力 | 85 页 | 11.66 MB | 5 月前
    3
  • pdf文档 Experiment 2: Logistic Regression and Newton's Method

    Experiment 2: Logistic Regression and Newton’s Method August 29, 2018 1 Description In this exercise, you will use Newton’s Method to implement logistic regression on a classification problem. 2 Data 1 score 40 45 50 55 60 65 70 75 80 85 90 Exam 2 score 4 Logistic Regression Recall that in logistic regression, the hypothesis function is hθ(x) = g(θT x) = 1 1 + e−θT x = P(y = 1 | x; θ) than (or equal to) some threshold ϵ, i.e. |L+(θ) − L(θ)| ≤ ϵ (7) Try to resolve the logistic regression problem using gradient de- scent method with the initialization θ = 0, and answer the following
    0 码力 | 4 页 | 196.41 KB | 1 年前
    3
  • pdf文档 Logistic Regression

    Logistic Regression 主讲人:龙良曲 Recap ▪ for continuous: ? = ?? + ? ▪ for probability output: ? = ? ?? + ? ▪ ?: ??????? ?? ???????? Binary Classification ▪ interpret network as ?: ? → ? ? ?; ? ▪ output output ∈ 0, 1 ▪ which is exactly what logistic function comes in! Goal v.s. Approach ▪ For regression: ▪ Goal: ???? = ? ▪ Approach: minimize ????(????, ?) ▪ For classification: ▪ Goal: maximize benchmark since the number of correct is not continuous Q2. why call logistic regression ▪ use sigmoid ▪ Controversial! ▪ MSE => regression ▪ Cross Entropy => classification 0.7 0.3 0.7 MSE CEL Binary Classification
    0 码力 | 12 页 | 798.46 KB | 1 年前
    3
  • pdf文档 Oracle VM VirtualBox 4.3.36 User Manual

    problems which do not occur with other, similar servers. 8. Is the problem a regression? Knowing that an issue is a regression usually makes it signifi- cantly easier to find the solution. In this case, conditions (bug #13487) • Host services: fixed a crash during VM shutdown under rare conditions (4.3.32 regression; bug #14841) • ExtPack: black-list Extension Packs older than 4.3.30 due to incompatible changes hosts: several El-Capitan fixes • X11 Additions: fixed wrong DPI value with certain guests (4.3.28 regression; bug #14151) • Solaris Additions: added quiesce support to co-operate with Solaris’ fast-reboot
    0 码力 | 380 页 | 3.79 MB | 5 月前
    3
  • pdf文档 Oracle VM VirtualBox 4.0.0_beta1 User Manual

    problems which do not occur with other, similar servers. 8. Is the problem a regression? Knowing that an issue is a regression usually makes it signifi- cantly easier to find the solution. In this case, to propagate any DNS name server / domain / search string information to the NAT network (4.3.24 regression; bugs #13915, #13918) • NAT Network: don’t delay the shutdown of VBoxSVC on Windows hosts • Mouse the mouse could not be moved under rare conditions if no Guest Additions are installed (4.3.24 regression; bug #13935) • Storage: if the guest ejects a virtual CD/DVD medium, make the change permanent
    0 码力 | 380 页 | 6.11 MB | 1 年前
    3
  • pdf文档 Oracle VM VirtualBox 4.3.22 User Manual

    problems which do not occur with other, similar servers. 8. Is the problem a regression? Knowing that an issue is a regression usually makes it signifi- cantly easier to find the solution. In this case, X11 hosts. • GUI: fix occasional loss of focus in full-screen mode on X11 host systems (4.3.16 regression) • GUI: Mac OS X: wizards should have Cancel button (bug #12541) • GUI: added a global option circum- stances (bug #13190) • ACPI: fixed occassional Guru Meditations in ACPI timer code (4.3.18 regression; bug #13521) • EFI: improved performance of IDE disk access • EFI: fixed a bug in the EFI video
    0 码力 | 372 页 | 6.01 MB | 1 年前
    3
共 861 条
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 87
前往
页
相关搜索词
LectureNotesonLinearRegressionExperimentLogisticContinuousTestingforSaferandFasterRefactoringNewtonMethod深度学习PyTorch入门实战24OracleVMVirtualBox4.336UserManual4.0beta122
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩