积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部后端开发(328)Julia(86)C++(76)数据库(63)Conan(63)Python(45)其它语言(42)PostgreSQL(40)Django(30)nim(28)

语言

全部英语(396)中文(繁体)(10)中文(简体)(5)韩语(1)

格式

全部PDF文档 PDF(356)其他文档 其他(56)
 
本次搜索耗时 0.051 秒,为您找到相关结果约 412 个.
  • 全部
  • 后端开发
  • Julia
  • C++
  • 数据库
  • Conan
  • Python
  • 其它语言
  • PostgreSQL
  • Django
  • nim
  • 全部
  • 英语
  • 中文(繁体)
  • 中文(简体)
  • 韩语
  • 全部
  • PDF文档 PDF
  • 其他文档 其他
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Neighborhoods Banding Together: Reasoning Globally about Programs

    Neighborhoods Banding Together Reasoning Globally about Programs Lisa LippincottThe code here is written in a fantasy C++, with extensions supporting local reasoning.void foo() implementation { … …
    0 码力 | 49 页 | 1.03 MB | 5 月前
    3
  • pdf文档 Google 《Prompt Engineering v7》

    text classification, language or code translation, code generation, and code documentation or reasoning. Please feel free to refer to Google’s prompting guides2,3 with simple and effective prompting the specific task. This ‘step back’ allows the LLM to activate relevant background knowledge and reasoning processes before attempting to solve the specific problem. By considering the broader and underlying Chain of Thought (CoT) 9 prompting is a technique for improving the reasoning capabilities of LLMs by generating intermediate reasoning steps. This helps the LLM generate more accurate answers. You can
    0 码力 | 68 页 | 6.50 MB | 6 月前
    3
  • pdf文档 The Hitchhiker’s Guide to Logical Verification

    . . . . . . . . . . . . . . . . . . . . . . . . 23 2.3 Reasoning about Connectives and Quantifiers . . . . . . . . . . . . . . 26 2.4 Reasoning about Equality . . . . . . . . . . . . . . . . . . . . 37 3.3 Forward Reasoning about Connectives and Quantifiers . . . . . . . . 39 3.4 Calculational Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 3.5 Forward Reasoning with Tactics . Proofs (CPP) and Interactive Theorem Proving (ITP) or in journals such as the Journal of Automated Reasoning (JAR). Equipped with a good knowledge of Lean, you will find it easy to move to an- other proof
    0 码力 | 215 页 | 1.95 MB | 1 年前
    3
  • pdf文档 DeepSeek-V2: A Strong, Economical, and Efficient Mixture-of-Experts Language Model

    collect 1.5M conversational sessions, which encompass various domains such as math, code, writing, reasoning, safety, and more, to perform Supervised Fine-Tuning (SFT) for DeepSeek-V2 Chat (SFT). Finally, 2020), C-Eval (Huang et al., 2023), and CMMLU (Li et al., 2023). Language understanding and reasoning datasets include HellaSwag (Zellers et al., 2019), PIQA (Bisk et al., 2020), ARC (Clark et al., ?}) . (34) Training Strategy. In our preliminary experiments, we find that the RL training on reasoning data, such as code and math prompts, exhibits unique characteristics that are distinct from the
    0 码力 | 52 页 | 1.23 MB | 1 年前
    3
  • pdf文档 Trends Artificial Intelligence

    which surpasses the performance of other leading models (GPT- 4o, Claude 3.5) on some reasoning tests 3/23: OpenAI releases GPT-4, a multimodal* model capable of processing both text line with Western competitors 1/25: DeepSeek releases its R1 & R1- Zero open- source reasoning models 2/25: OpenAI releases GPT-4.5, Anthropic releases Claude 3.7 Sonnet, & xAI releases professional subjects, such as math, law, medicine, and history. It measures both factual recall and reasoning ability, making it a standard for assessing general knowledge and problem-solving in large language
    0 码力 | 340 页 | 12.14 MB | 4 月前
    3
  • pdf文档 Theorem Proving in Lean Release 3.23.0

    viewed as a proof as well, and these systems, too, help establish mathematical claims. Automated reasoning systems strive for power and efficiency, often at the expense of guaranteed soundness. Such systems construction of fully specified axiomatic proofs. The goal is to support both mathematical reasoning and reasoning about complex systems, and to verify claims in both domains. Lean’s underlying logic has the point, it can be viewed as a system for writing programs with a precise semantics, as well as reasoning about the functions that the programs compute. Lean also has mechanisms to serve as its own metaprogramming
    0 码力 | 173 页 | 777.93 KB | 1 年前
    3
  • pdf文档 An Introduction to Lean

    makes it look somewhat like any informal mathematical proof. There is also a tiny bit of automated reasoning thrown in: the command by simp calls on Lean’s built-in simplifier to prove the assertion after points to another aspect of Lean, namely, that it can serve as a gateway to the use of automated reasoning. Terms in dependent type theory can be very verbose, and formal proofs can be especially long. One that serves as a gateway to the use of automation. Lean provides means of implementing automated reasoning procedures in such a way that they produce formal proofs that their results are correct. This imposes
    0 码力 | 48 页 | 191.92 KB | 1 年前
    3
  • pdf文档 DeepSeek图解10页PDF

    进行训练,为后续的推理优化奠定基础。 3.1.1 核心创新 1:含 R1-Zero 的中间推理模型 如图7所示,推理导向的强化学习(Reasoning-Oriented Reinforcement Learn- ing)得到中间推理模型(Iterim reasoning model), 图8会详细解释中间模 型的训练过程。 DeepSeek-R1 核心贡献:首次验证了通过纯强化学习也能大幅提升大模 中间模型占据主要训练精力的阶段,实际上完全通过推理导向的强化学习 直接训练而成,完全跳过了监督微调(SFT),如下图8所示,只在强化学习 的冷启动阶段使用了 SFT。 图 8: Interim reasoning model 训练方法 大规模推理导向的强化学习训练,必不可少的就是推理数据,手动标注就 太繁琐了,成本昂贵,所以 DeepSeek 团队为了解决这个问题,训了一个 R1-Zero 模型,这是核心创新。 AI,欢迎关注获取更多原创教程。资 料用心打磨且开源,是为了帮助更多人了解获取 AI 知识,严禁拿此资料引流、出书、等形式的商业活动 3.4 总结 DeepSeek-R1 中间推理模型生成:通过推理导向的强化学习(Reasoning-Oriented RL), 直接生成高质量的推理数据(CoT 示例),减少人工标注依赖。通用强化学 习优化:基于帮助性和安全性奖励模型,优化推理与非推理任务表现,构建 通用性强的模型。最终,DeepSeek-R1
    0 码力 | 11 页 | 2.64 MB | 7 月前
    3
  • epub文档 Agda User Manual v2.6.0.1

    Types in Agda [http://oxij.org/note/BrutalDepTypes/] Thorsten Altenkirch. Computer Aided Formal Reasoning [http://www.cs.nott.ac.uk/~txa/g53cfr/] - online lecture notes Daniel Licata. Dependently Typed [https://people.inf.elte.hu/divip/AgdaTutorial/Index.html] Courses using Agda Computer Aided Reasoning [http://www.cs.nott.ac.uk/~txa/g53cfr/] Material for a 3rd / 4th year course (g53cfr, g54 cfr) at Viewing equalities as functions out of the interval makes it possible to do a lot of equality reasoning in a very direct way: sym : ∀ {ℓ} {A : Set ℓ} {x y : A} → x ≡ y → y ≡ x sym p = λ i → p (~ i)
    0 码力 | 256 页 | 247.15 KB | 1 年前
    3
  • epub文档 Agda User Manual v2.6.0

    Types in Agda [http://oxij.org/note/BrutalDepTypes/] Thorsten Altenkirch. Computer Aided Formal Reasoning [http://www.cs.nott.ac.uk/~txa/g53cfr/] - online lecture notes Daniel Licata. Dependently Typed [https://people.inf.elte.hu/divip/AgdaTutorial/Index.html] Courses using Agda Computer Aided Reasoning [http://www.cs.nott.ac.uk/~txa/g53cfr/] Material for a 3rd / 4th year course (g53cfr, g54 cfr) at Viewing equalities as functions out of the interval makes it possible to do a lot of equality reasoning in a very direct way: sym : ∀ {ℓ} {A : Set ℓ} {x y : A} → x ≡ y → y ≡ x sym p = λ i → p (~ i)
    0 码力 | 256 页 | 246.87 KB | 1 年前
    3
共 412 条
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 42
前往
页
相关搜索词
NeighborhoodsBandingTogetherReasoningGloballyaboutProgramsGooglePromptEngineeringv7TheHitchhikerGuidetoLogicalVerificationDeepSeekV2StrongEconomicalandEfficientMixtureofExpertsLanguageModelTrendsArtificialIntelligenceTheoremProvinginLeanRelease3.23AnIntroduction图解10PDFAgdaUserManualv26.0
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩