积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部后端开发(373)Python(153)Julia(87)数据库(68)Celery(47)云计算&大数据(40)Django(30)TiDB(30)Pandas(29)nim(29)

语言

全部英语(405)中文(简体)(92)中文(繁体)(23)法语(1)日语(1)韩语(1)英语(1)

格式

全部PDF文档 PDF(417)其他文档 其他(107)
 
本次搜索耗时 0.325 秒,为您找到相关结果约 524 个.
  • 全部
  • 后端开发
  • Python
  • Julia
  • 数据库
  • Celery
  • 云计算&大数据
  • Django
  • TiDB
  • Pandas
  • nim
  • 全部
  • 英语
  • 中文(简体)
  • 中文(繁体)
  • 法语
  • 日语
  • 韩语
  • 英语
  • 全部
  • PDF文档 PDF
  • 其他文档 其他
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Lecture Notes on Gaussian Discriminant Analysis, Naive

    Lecture Notes on Gaussian Discriminant Analysis, Naive Bayes and EM Algorithm Feng Li fli@sdu.edu.cn Shandong University, China 1 Bayes’ Theorem and Inference Bayes’ theorem is stated mathematically almost always do better than GDA. In practice, logistic regression is used more often than GDA 4 Naive Bayes 4.1 Assumption Again, we assume that the m training data are denoted by {x(i), y(i)}i=1,··· j ∈ [n] and y ∈ [k]. In Naive Bayes (NB) model, the feature and label can be represented by random variables {Xj}j∈[n] and Y , respectively. Furthermore, for ∀j ̸= j′, Naive Bayes assumes Xj and Xj′ are
    0 码力 | 19 页 | 238.80 KB | 1 年前
    3
  • pdf文档 Lecture 5: Gaussian Discriminant Analysis, Naive Bayes

    Lecture 5: Gaussian Discriminant Analysis, Naive Bayes and EM Algorithm Feng Li Shandong University fli@sdu.edu.cn September 27, 2023 Feng Li (SDU) GDA, NB and EM September 27, 2023 1 / 122 Outline Outline 1 Probability Theory Review 2 A Warm-Up Case 3 Gaussian Discriminate Analysis 4 Naive Bayes 5 Expectation-Maximization (EM) Algorithm Feng Li (SDU) GDA, NB and EM September 27, 2023 2 / 122 indicates if the i-th email is a spam Feng Li (SDU) GDA, NB and EM September 27, 2023 62 / 122 Naive Bayes Training data (x(i), y(i))i=1,··· ,m x(i) is a n-dimensional vector Each feature x(i) j ∈
    0 码力 | 122 页 | 1.35 MB | 1 年前
    3
  • epub文档 peewee Documentation Release 0.9.7

    improvements by using the SelectQuery.naive() query method. See the documentation for details on this optimization. stats_query = Stat.select().naive() # note we are calling "naive()" stats_qr = stats_query.execute() queries can get a performance boost (especially when iterating over large result sets) by calling naive(). This method simply patches all attributes directly from the cursor onto the model. For simple queries posted on %s' % (entry.title, entry.blog.title) And here is how you would do the same if using a naive query: # very similar query to the above -- main difference is we're # aliasing the blog title to
    0 码力 | 78 页 | 143.68 KB | 1 年前
    3
  • epub文档 peewee Documentation Release 1.0.0

    improvements by using the SelectQuery.naive() query method. See the documentation for details on this optimization. stats_query = Stat.select().naive() # note we are calling "naive()" stats_qr = stats_query.execute() queries can get a performance boost (especially when iterating over large result sets) by calling naive(). This method simply patches all attributes directly from the cursor onto the model. For simple queries posted on %s' % (entry.title, entry.blog.title) And here is how you would do the same if using a naive query: # very similar query to the above -- main difference is we're # aliasing the blog title to
    0 码力 | 101 页 | 163.20 KB | 1 年前
    3
  • pdf文档 peewee Documentation Release 0.9.7

    improvements by using the SelectQuery.naive() query method. See the documentation for details on this optimization. stats_query = Stat.select().naive() # note we are calling "naive()" stats_qr = stats_query.execute() queries can get a performance boost (especially when iterating over large result sets) by calling naive(). This method simply patches all attributes directly from the cursor onto the model. For simple queries posted on %s’ % (entry.title, entry.blog.title) And here is how you would do the same if using a naive query: # very similar query to the above -- main difference is we’re # aliasing the blog title to
    0 码力 | 53 页 | 347.03 KB | 1 年前
    3
  • pdf文档 peewee Documentation Release 2.0.2

    improvements by using the SelectQuery.naive() query method. See the documentation for details on this optimization. stats_query = Stat.select().naive() # note we are calling "naive()" stats_qr = stats_query.execute() queries can get a performance boost (especially when iterating over large result sets) by calling naive(). This method simply patches all attributes directly from the cursor onto the model. For simple queries if using a naive query: # very similar query to the above -- main difference is we’re # aliasing the blog title to "blog_title" tweets = Tweet.select(Tweet, User.username).join(User).naive() for tweet
    0 码力 | 65 页 | 315.33 KB | 1 年前
    3
  • pdf文档 peewee Documentation Release 1.0.0

    improvements by using the SelectQuery.naive() query method. See the documentation for details on this optimization. stats_query = Stat.select().naive() # note we are calling "naive()" stats_qr = stats_query.execute() queries can get a performance boost (especially when iterating over large result sets) by calling naive(). This method simply patches all attributes directly from the cursor onto the model. For simple queries posted on %s’ % (entry.title, entry.blog.title) And here is how you would do the same if using a naive query: # very similar query to the above -- main difference is we’re # aliasing the blog title to
    0 码力 | 71 页 | 405.29 KB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 1.4.2

    incremented with each revision. • All dates are converted to UTC when serializing. Even timezone naive values, which are treated as UTC with an offset of 0. In [275]: from pandas.io.json import build_table_schema Datetime data types Using SQLAlchemy, to_sql() is capable of writing datetime data that is timezone naive or timezone aware. However, the resulting data stored in the database ultimately depends on the supported written as timezone naive timestamps that are in local time with respect to the timezone. read_sql_table() is also capable of reading datetime data that is timezone aware or naive. When reading TIMESTAMP
    0 码力 | 3739 页 | 15.24 MB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 1.4.4

    incremented with each revision. • All dates are converted to UTC when serializing. Even timezone naive values, which are treated as UTC with an offset of 0. In [296]: from pandas.io.json import build_table_schema Datetime data types Using SQLAlchemy, to_sql() is capable of writing datetime data that is timezone naive or timezone aware. However, the resulting data stored in the database ultimately depends on the supported written as timezone naive timestamps that are in local time with respect to the timezone. read_sql_table() is also capable of reading datetime data that is timezone aware or naive. When reading TIMESTAMP
    0 码力 | 3743 页 | 15.26 MB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 1.5.0rc0

    incremented with each revision. • All dates are converted to UTC when serializing. Even timezone naive values, which are treated as UTC with an offset of 0. In [293]: from pandas.io.json import build_table_schema Datetime data types Using SQLAlchemy, to_sql() is capable of writing datetime data that is timezone naive or timezone aware. However, the resulting data stored in the database ultimately depends on the supported written as timezone naive timestamps that are in local time with respect to the timezone. read_sql_table() is also capable of reading datetime data that is timezone aware or naive. When reading TIMESTAMP
    0 码力 | 3943 页 | 15.73 MB | 1 年前
    3
共 524 条
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 53
前往
页
相关搜索词
LectureNotesonGaussianDiscriminantAnalysisNaiveBayespeeweeDocumentationRelease0.91.02.0pandaspowerfulPythondataanalysistoolkit1.41.50rc0
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩