积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部后端开发(183)数据库(98)Julia(87)云计算&大数据(83)Apache Kyuubi(44)综合其他(41)Python(39)系统运维(33)Blender(33)数据库工具(32)

语言

全部英语(338)中文(简体)(72)中文(繁体)(23)英语(3)日语(1)韩语(1)

格式

全部PDF文档 PDF(383)其他文档 其他(55)
 
本次搜索耗时 0.122 秒,为您找到相关结果约 438 个.
  • 全部
  • 后端开发
  • 数据库
  • Julia
  • 云计算&大数据
  • Apache Kyuubi
  • 综合其他
  • Python
  • 系统运维
  • Blender
  • 数据库工具
  • 全部
  • 英语
  • 中文(简体)
  • 中文(繁体)
  • 英语
  • 日语
  • 韩语
  • 全部
  • PDF文档 PDF
  • 其他文档 其他
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Evolution of a Median Algorithm

    12 Output the median after the samples are collected3ChatGPT 4ChatGPT 5Median #include #include #include auto median(std::vector& v) { std::ranges::sort(v); v[medianIndex]; } 6Evolution of a Median Algorithm Pete Isensee Engineering Director 7Goal 8 template constexpr auto median(Range&& rg) { // TODO // O(N) Projection = std::identity> constexpr auto median( ExecPolicy&& execPolicy, Range&& rg, Comparison comp = {}, Projection proj = {}) { // TODO }Median auto median(std::vector& v) { std::ranges::sort(v);
    0 码力 | 46 页 | 1.06 MB | 5 月前
    3
  • pdf文档 Adventures in SIMD Thinking (Part 1 of 2)

    SIMD-style thinking to tackle some interesting problems • Intra-register sorting • Fast linear median-of-seven filter • Fast small-kernel convolution • Faster (?) UTF-8 to UTF-32 conversion (with vals5Copyright © 2020 Bob Steagall Fast Linear Median Filter 57 CppCon 2020 - Adventures in SIMD ThinkingCopyright © 2020 Bob Steagall K E W B C O M P U T I N G Fast Median Filter? • If we can sort two lanes of a fast median-of-seven linear filter • median: a value separating the higher half from the lower half of a data sample • If I have an array a of seven integers, and they are sorted, the median is a[3]
    0 码力 | 88 页 | 824.07 KB | 5 月前
    3
  • pdf文档 A Long Journey of Changing std::sort Implementation at Scale

    first > __stl_threshold) { RandomAccessIterator cut = __unguarded_partition (first, last, T(__median(*first, *(first + (last - first)/2), *(last - 1), first > __stl_threshold) { RandomAccessIterator cut = __unguarded_partition (first, last, T(__median(*first, *(first + (last - first)/2), *(last - 1), { quick sort loop(first cut comp); 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 (first, last, T(__median(*first, *(first + (last - first)/2), *(last - 1), template
    0 码力 | 182 页 | 7.65 MB | 5 月前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 0.7.1

    ops with level parameter passed (GH545) • Ported skiplist data structure to C to speed up rolling_median by about 5-10x in most typical use cases (GH374) 8 Chapter 1. What’s New pandas: powerful Python Out[236]: -0.28367872471747613 In [237]: s[:3] Out[237]: a -0.284 b -1.537 c 0.163 In [238]: s[s > s.median()] Out[238]: a -0.284 c 0.163 In [239]: s[[4, 3, 1]] Out[239]: e -1.703 d -0.648 b -1.537 In non-null observations sum Sum of values mean Mean of values mad Mean absolute deviation median Arithmetic median of values min Minimum max Maximum abs Absolute Value prod Product of values std Unbiased
    0 码力 | 281 页 | 1.45 MB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 0.7.2

    ops with level parameter passed (GH545) • Ported skiplist data structure to C to speed up rolling_median by about 5-10x in most typical use cases (GH374) 1.4 v.0.6.1 (December 13, 2011) 1.4.1 New features Out[236]: -0.28367872471747613 In [237]: s[:3] Out[237]: a -0.284 b -1.537 c 0.163 In [238]: s[s > s.median()] Out[238]: a -0.284 c 0.163 In [239]: s[[4, 3, 1]] Out[239]: e -1.703 d -0.648 b -1.537 In non-null observations sum Sum of values mean Mean of values mad Mean absolute deviation median Arithmetic median of values min Minimum max Maximum abs Absolute Value prod Product of values std Unbiased
    0 码力 | 283 页 | 1.45 MB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 0.7.3

    ops with level parameter passed (GH545) • Ported skiplist data structure to C to speed up rolling_median by about 5-10x in most typical use cases (GH374) 1.5 v.0.6.1 (December 13, 2011) 1.5.1 New features Out[236]: -0.28367872471747613 In [237]: s[:3] Out[237]: a -0.284 b -1.537 c 0.163 In [238]: s[s > s.median()] Out[238]: a -0.284 c 0.163 In [239]: s[[4, 3, 1]] Out[239]: e -1.703 d -0.648 b -1.537 In non-null observations sum Sum of values mean Mean of values mad Mean absolute deviation median Arithmetic median of values min Minimum max Maximum abs Absolute Value prod Product of values std Unbiased
    0 码力 | 297 页 | 1.92 MB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 0.13.1

    improvements • Improved implementation of rolling min and max (thanks to Bottleneck !) • Add accelerated ’median’ GroupBy option (GH1358) • Significantly improve the performance of parsing ISO8601-format date ops with level parameter passed (GH545) • Ported skiplist data structure to C to speed up rolling_median by about 5-10x in most typical use cases (GH374) 1.15 v.0.6.1 (December 13, 2011) 1.15.1 New features 3443118127316671 In [13]: s[:3] Out[13]: a -1.344 b 0.845 c 1.076 dtype: float64 In [14]: s[s > s.median()] Out[14]: c 1.076 e 1.644 dtype: float64 In [15]: s[[4, 3, 1]] Out[15]: e 1.644 d -0.109 b
    0 码力 | 1219 页 | 4.81 MB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 0.14.0

    improvements • Improved implementation of rolling min and max (thanks to Bottleneck !) • Add accelerated ’median’ GroupBy option (GH1358) • Significantly improve the performance of parsing ISO8601-format date ops with level parameter passed (GH545) • Ported skiplist data structure to C to speed up rolling_median by about 5-10x in most typical use cases (GH374) 1.16 v.0.6.1 (December 13, 2011) 1.16.1 New features 87590640278094278 In [13]: s[:3] Out[13]: a 0.876 b -2.211 c 0.974 dtype: float64 In [14]: s[s > s.median()] Out[14]: a 0.876 c 0.974 dtype: float64 In [15]: s[[4, 3, 1]] Out[15]: e -0.410 d -2.007
    0 码力 | 1349 页 | 7.67 MB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 0.12

    improvements • Improved implementation of rolling min and max (thanks to Bottleneck !) • Add accelerated ’median’ GroupBy option (GH1358) • Significantly improve the performance of parsing ISO8601-format date ops with level parameter passed (GH545) • Ported skiplist data structure to C to speed up rolling_median by about 5-10x in most typical use cases (GH374) 1.13 v.0.6.1 (December 13, 2011) 1.13.1 New features -1.3443118127316671 In [13]: s[:3] a -1.344 b 0.845 c 1.076 dtype: float64 In [14]: s[s > s.median()] c 1.076 e 1.644 dtype: float64 In [15]: s[[4, 3, 1]] e 1.644 d -0.109 b 0.845 dtype: float64
    0 码力 | 657 页 | 3.58 MB | 1 年前
    3
  • pdf文档 Just-in-Time Compilation - J F Bastien - CppCon 2020

    Optimizing Dynamically-Typed Object- Oriented Languages With Polymorphic Inline Caches PICs achieve a median speedup of 11%. As an important side effect, PICs collect type information by recording all of generate better code when recompiling a method. An experimental version of such a system achieves a median speedup of 27% for our set of SELF programs, reducing the number of non-inlined message sends by Optimizing Dynamically-Typed Object- Oriented Languages With Polymorphic Inline Caches PICs achieve a median speedup of 11%. As an important side effect, PICs collect type information by recording all of
    0 码力 | 111 页 | 3.98 MB | 5 月前
    3
共 438 条
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 44
前往
页
相关搜索词
EvolutionofMedianAlgorithmAdventuresinSIMDThinkingPartLongJourneyChangingstdsortImplementationatScalepandaspowerfulPythondataanalysistoolkit0.70.130.140.12JustTimeCompilationBastienCppCon2020
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩