积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部后端开发(984)Java(312)综合其他(295)Spring(264)Python(245)云计算&大数据(231)Weblate(212)数据库(160)C++(145)VirtualBox(112)

语言

全部英语(1576)中文(简体)(147)中文(繁体)(21)英语(6)日语(3)韩语(3)西班牙语(1)中文(简体)(1)中文(繁体)(1)

格式

全部PDF文档 PDF(1318)其他文档 其他(416)TXT文档 TXT(17)DOC文档 DOC(6)PPT文档 PPT(3)
 
本次搜索耗时 0.414 秒,为您找到相关结果约 1000 个.
  • 全部
  • 后端开发
  • Java
  • 综合其他
  • Spring
  • Python
  • 云计算&大数据
  • Weblate
  • 数据库
  • C++
  • VirtualBox
  • 全部
  • 英语
  • 中文(简体)
  • 中文(繁体)
  • 英语
  • 日语
  • 韩语
  • 西班牙语
  • 中文(简体)
  • 中文(繁体)
  • 全部
  • PDF文档 PDF
  • 其他文档 其他
  • TXT文档 TXT
  • DOC文档 DOC
  • PPT文档 PPT
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 What Volatile Means (and Doesn't Mean)

    What Volatile Means (and Doesn't Mean) Copyright © 2024 by Ben Saks and Dan Saks 0-1 What Volatile Means (and Doesn’t Mean) by Ben Saks and Dan Saks September, 2024 1 Saks & Associates These notes +1-412-521-4117 (voice) service@saksandassociates.com saksandassociates.com 2What Volatile Means (and Doesn't Mean) Copyright © 2024 by Ben Saks and Dan Saks 0-2 Introduction  The volatilequalifier is a vital doesn’t provide  Workarounds for compiler issues regarding volatile 8What Volatile Means (and Doesn't Mean) Copyright © 2024 by Ben Saks and Dan Saks 0-3 Why volatile is Necessary  Many device drivers
    0 码力 | 32 页 | 901.80 KB | 5 月前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 0.25

    of your data: In [19]: df.describe() Out[19]: A B C D count 6.000000 6.000000 6.000000 6.000000 mean 0.019114 -0.237323 1.536861 -0.610132 std 1.117102 1.415574 0.988006 0.416115 min -1.323650 -2.769586 Release 0.25.3 In [61]: df.mean() Out[61]: A -0.286344 B -0.489887 C 1.536861 D 5.000000 F 3.000000 dtype: float64 Same operation on the other axis: In [62]: df.mean(1) Out[62]: 2013-01-01 1.698387 DataFrame. Most of these are aggregations (hence producing a lower-dimensional result) like sum(), mean(), and quantile(), but some of them, like cumsum() and cumprod(), produce an object of the same size
    0 码力 | 698 页 | 4.91 MB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 0.7.1

    df.apply(lambda x: x.describe()) Out[903]: 0 1 2 3 count 10.000000 10.000000 10.000000 10.000000 mean -0.556258 -0.268695 -0.215066 0.073787 std 0.775352 1.072879 1.431537 0.962624 min -1.696646 -2 error message in setup.py if NumPy not installed • Use common set of NA-handling operations (sum, mean, etc.) in Panel class also (GH536) • Default name assignment when calling reset_index on DataFrame respectively (GH319) • Implemented operators ‘&’, ‘|’, ‘^’, ‘-‘ on DataFrame (GH347) • Added Series.mad, mean absolute deviation • Added QuarterEnd DateOffset (PR321) • Added dot to DataFrame (GH65) • Added
    0 码力 | 281 页 | 1.45 MB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 0.7.2

    df.apply(lambda x: x.describe()) Out[904]: 0 1 2 3 count 10.000000 10.000000 10.000000 10.000000 mean -0.556258 -0.268695 -0.215066 0.073787 std 0.775352 1.072879 1.431537 0.962624 min -1.696646 -2 error message in setup.py if NumPy not installed • Use common set of NA-handling operations (sum, mean, etc.) in Panel class also (GH536) • Default name assignment when calling reset_index on DataFrame respectively (GH319) • Implemented operators ‘&’, ‘|’, ‘^’, ‘-‘ on DataFrame (GH347) • Added Series.mad, mean absolute deviation • Added QuarterEnd DateOffset (PR321) • Added dot to DataFrame (GH65) • Added
    0 码力 | 283 页 | 1.45 MB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 0.7.3

    describe() Out[931]: A bar count 3.000000 mean 0.182047 std 2.350329 min -1.581790 25% -1.152040 50% -0.722290 75% 1.063965 max 2.850221 foo count 5.000000 mean -0.425297 std 1.057399 min -1.868914 df.apply(lambda x: x.describe()) Out[934]: 0 1 2 3 count 10.000000 10.000000 10.000000 10.000000 mean -0.372564 0.069529 0.149059 -0.135687 std 0.544436 1.021552 1.537344 0.905893 min -1.039777 -1.246778 error message in setup.py if NumPy not installed • Use common set of NA-handling operations (sum, mean, etc.) in Panel class also (GH536) • Default name assignment when calling reset_index on DataFrame
    0 码力 | 297 页 | 1.92 MB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 0.14.0

    [38]: g.describe() Out[38]: B A 1 count 1.000000 mean 4.000000 std NaN min 4.000000 25% 4.000000 50% 4.000000 75% 4.000000 ... ... 5 mean 7.000000 std 1.414214 min 6.000000 25% 6.500000 50% describe() Out[42]: A B 0 count 2 1.000000 mean 1 4.000000 std 0 NaN min 1 4.000000 25% 1 4.000000 50% 1 4.000000 75% 1 4.000000 ... .. ... 1 mean 5 7.000000 std 0 1.414214 min 5 6.000000 25% resampling; rolling_max() de- faults to max, rolling_min() defaults to min, and all others default to mean (GH6297) 22 Chapter 1. What’s New pandas: powerful Python data analysis toolkit, Release 0.14.0
    0 码力 | 1349 页 | 7.67 MB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 0.20.3

    sum . . . . . . . . . . . . . . . . . . . . . . . . . . . 1766 34.12.1.3 pandas.core.window.Rolling.mean . . . . . . . . . . . . . . . . . . . . . . . . . . 1766 34.12.1.4 pandas.core.window.Rolling.median quantile . . . . . . . . . . . . . . . . . . . . . . . . . 1769 34.12.1.15pandas.core.window.Window.mean . . . . . . . . . . . . . . . . . . . . . . . . . . 1770 34.12.1.16pandas.core.window.Window.sum sum . . . . . . . . . . . . . . . . . . . . . . . . . 1771 34.12.2.3 pandas.core.window.Expanding.mean . . . . . . . . . . . . . . . . . . . . . . . . . 1771 34.12.2.4 pandas.core.window.Expanding.median
    0 码力 | 2045 页 | 9.18 MB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 0.21.1

    sum . . . . . . . . . . . . . . . . . . . . . . . . . . . 1904 34.15.1.3 pandas.core.window.Rolling.mean . . . . . . . . . . . . . . . . . . . . . . . . . . 1904 34.15.1.4 pandas.core.window.Rolling.median quantile . . . . . . . . . . . . . . . . . . . . . . . . . 1907 34.15.1.15pandas.core.window.Window.mean . . . . . . . . . . . . . . . . . . . . . . . . . . 1907 34.15.1.16pandas.core.window.Window.sum sum . . . . . . . . . . . . . . . . . . . . . . . . . 1908 34.15.2.3 pandas.core.window.Expanding.mean . . . . . . . . . . . . . . . . . . . . . . . . . 1909 34.15.2.4 pandas.core.window.Expanding.median
    0 码力 | 2207 页 | 8.59 MB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 0.20.2

    sum . . . . . . . . . . . . . . . . . . . . . . . . . . . 1636 34.12.1.3 pandas.core.window.Rolling.mean . . . . . . . . . . . . . . . . . . . . . . . . . . 1636 34.12.1.4 pandas.core.window.Rolling.median quantile . . . . . . . . . . . . . . . . . . . . . . . . . 1639 34.12.1.15pandas.core.window.Window.mean . . . . . . . . . . . . . . . . . . . . . . . . . . 1639 34.12.1.16pandas.core.window.Window.sum sum . . . . . . . . . . . . . . . . . . . . . . . . . 1641 34.12.2.3 pandas.core.window.Expanding.mean . . . . . . . . . . . . . . . . . . . . . . . . . 1641 34.12.2.4 pandas.core.window.Expanding.median
    0 码力 | 1907 页 | 7.83 MB | 1 年前
    3
  • pdf文档 pandas: powerful Python data analysis toolkit - 1.1.1

    straightforward. To introduction tutorial To user guide Straight to tutorial... Basic statistics (mean, median, min, max, counts...) are easily calculable. These or custom aggregations can be applied on statistics of the numerical data of my data table In [9]: df.describe() Out[9]: Age count 3.000000 mean 38.333333 std 18.230012 min 22.000000 25% 28.500000 50% 35.000000 75% 46.500000 max 58.000000 Aggregating statistics What is the average age of the Titanic passengers? In [4]: titanic["Age"].mean() Out[4]: 29.69911764705882 Different statistics are available and can be applied to columns with
    0 码力 | 3231 页 | 10.87 MB | 1 年前
    3
共 1000 条
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 100
前往
页
相关搜索词
WhatVolatileMeansandDoesnMeanpandaspowerfulPythondataanalysistoolkit0.250.70.140.200.211.1
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩