积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部后端开发(261)云计算&大数据(98)Julia(87)数据库(46)区块链(43)系统运维(36)Apache Kyuubi(36)其它语言(35)nim(31)Python(28)

语言

全部英语(315)中文(简体)(126)中文(繁体)(11)zh(3)俄语(2)中文(简体)(2)西班牙语(1)ro(1)英语(1)

格式

全部PDF文档 PDF(360)其他文档 其他(101)PPT文档 PPT(3)
 
本次搜索耗时 0.021 秒,为您找到相关结果约 464 个.
  • 全部
  • 后端开发
  • 云计算&大数据
  • Julia
  • 数据库
  • 区块链
  • 系统运维
  • Apache Kyuubi
  • 其它语言
  • nim
  • Python
  • 全部
  • 英语
  • 中文(简体)
  • 中文(繁体)
  • zh
  • 俄语
  • 中文(简体)
  • 西班牙语
  • ro
  • 英语
  • 全部
  • PDF文档 PDF
  • 其他文档 其他
  • PPT文档 PPT
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 A Day in the Life of a Data Scientist Conquer Machine Learning Lifecycle on Kubernetes

    500 Nodes https://blog.openai.com/scaling-kubernetes-to-2500-nodes/ Agenda • What is the typical ML workflow and some of their shortcomings • Why DevOps? • Why Containers, Kubernetes, and Helm? • Intro Inception v3 and transfer learning • Automate repeatable ML experiments with containers • Deploy ML components to Kubernetes with Kubeflow • Scale and test ML experiments with Helm • Manage training jobs and pipelines with TF Serving • Rapid prototyping with self-service Jupyter notebook from JupyterHub Simplified ML Workflow/Pipeline What is DevOps? • “A cross-disciplinary community of practice dedicated to the
    0 码力 | 21 页 | 68.69 MB | 1 年前
    3
  • pdf文档 Solving Nim by the Use of Machine Learning

    trainingType == 0): 21 ml = RS. ReinforcementSarsa ( startState ) 22 elif( trainingType == 1): 23 ml = RQ. ReinforcementQlearning ( startState ) 24 elif( trainingType == 2): 25 ml = SS. SpaceSaveSarsa == 3): 27 ml = SQ. SpaceSaveQlearning ( startState ) 28 elif( trainingType == 4): 29 ml = ODS.OneDSarsa(startState ) 30 else: 31 ml = SSSS. SpaceSaveSarsaSpread ( startState ) 38 32 ml.setup () time.time () 56 move = ml.makeMove(board) 57 end = time.time () 58 moveTime = end -start 59 board[move [1]] = board[move [1]] - move [0] 60 playstatistics .write("Move by ML , took " + str(move [0])
    0 码力 | 109 页 | 6.58 MB | 1 年前
    3
  • pdf文档 03 Experiments, Reproducibility, and Projects - Introduction to Scientific Writing WS2021/22

    Applications  Evaluate in larger scope of real datasets and query workloads  Examples: Customer workload, ML pipelines (dataprep, training, eval) Experiments and Result Presentation 7 706.015 Introduction topics: compression, ML accuracy  “Real” Data Repositories  Wide selection of available datasets w/ different characteristics  UCI ML Repository: https://archive.ics.uci.edu/ml/index.php  Florida tamu.edu/  Google dataset search: https://datasetsearch.research.google.com/  Common Datasets in ML: ImageNet, Mnist, CIFAR, KDD, Criteo  Common Datasets in DM: Census, Taxi, Airlines, DBLP, benchmarks
    0 码力 | 31 页 | 1.38 MB | 1 年前
    3
  • pdf文档 从 Swift 到机器学习 - 王巍

    从 Swift 到 机器器学习 CreateML - Swifter 通向 ML 的⾦金金钥匙 ? 王 巍 (onevcat) 2018.09.15, @Swift Conf. 后移动开发时代 Google Trends: “iOS Develop” WWDC 2013 转变⼀一般都会带来痛苦 如何评价 2017 年年初华为开始「清理理」34 岁以上的职员? 程序员能纯靠技术渡过中年年危机吗? 框架背后的特征提取 17KB in Demo Transfer Learning ✅ VisionFeaturePrint_Scene ? VisionFeaturePrint_Screen Core ML Community Tools visionFeaturePrint glmClassifier 开始定义 pipeline 输⼊入 299x299 保留留特性的同时限制处理理时间 VisionFeaturePrint 集成在 iOS 12 和 macOS 10.14 中 问题 No.1 Core ML - iOS 11 • CoreML 从 iOS 11 开始⽀支持 • ⽆无法读取 CreateML 创建的带有 VisionFeaturePrint 的模型 Core ML - iOS 11 使⽤用 TuriCreate 的其他模型进⾏行行特征提取 可以得到与 CreateML
    0 码力 | 64 页 | 4.32 MB | 1 年前
    3
  • pdf文档 7. UDF in ClickHouse

    Area = 16,30 $ ¥ € $ €¥ $ £ ¥ £ ¥ UDF in ClickHouse Concept, Develpoment, and Application in ML Systems Begin Content Area = 16,30 2 About CraiditX CraiditX 氪信, a finance AI startup since 2015 Contributor Begin Content Area = 16,30 4 OLAP in ML Systems Begin Content Area = 16,30 5 Begin Content Area = 16,30 6 Intensive Tasks in a ML System • Pre-analyzing the data • Extracting features relationship graphs • Generating reports • ... Begin Content Area = 16,30 7 Intensive Tasks in a ML System • Pre-analyzing the data = Finding the useful part of data + Summerizing data • Extracting
    0 码力 | 29 页 | 1.54 MB | 1 年前
    3
  • pdf文档 01 Structure of Scientific Papers - Introduction to Scientific Writing WS2021/22

    09/2018 TU Graz, Austria  BMK endowed chair for data management  Data management for data science (ML systems internals, end-to-end data science lifecycle)  2012-2018 IBM Research – Almaden, USA  Declarative Architecture of ML Systems (AMLS, SS) Data Integration and Large-Scale Analysis (DIA, WS) Master Bachelor Data management from user/application perspective Distributed Data Management ML system internals Topic selection needs time  pipeline model  Ex. Compressed Linear Algebra  Problem: Iterative ML algorithms + memory-bandwidth-bound operations  crucial to fit data in memory  automatic lossless
    0 码力 | 36 页 | 1.12 MB | 1 年前
    3
  • pdf文档 Leveraging Istio for Creating API Tests - Low Effort API Testing for Microservices

    Third-party apps Manual QA trace: r trace: r trace: r trace: r CI Pipeline | CONFIDENTIAL 16 ML-assisted Context Rule Learning createProduct(…): Response { “productId”: “HDSN1890675”, “src”: is effort intensive Solution • ML-driven identification of candidate relationships • Supervised system to accept true positives • No code! | CONFIDENTIAL 17 ML-assisted Assertion Rule Learning Assertion creation/maintenance is effort intensive Solution • Comprehensive comparison of results • ML-driven identification of decision rules • Human review to accept the learned rules • No code! Test
    0 码力 | 21 页 | 1.09 MB | 1 年前
    3
  • pdf文档 XDNN TVM - Nov 2019

    Frontend Deep Learning Frameworks https://github.com/xilinx© Copyright 2018 Xilinx TVM as Unified ML Front End >> 6 Relay (and NNVM) Graph Parser XIR Compiler Quantizer Partitioner @relay.transform i.e. ZC104/Ultra96) https://github.com/Xilinx/ml-suite/blob/master/examples/caffe/Benchmark_README.md Two measurements we track: Latency & Throughput ˃ ML pipeline contains multiple stages, performance Performance results based on Xilinx own runtime pipeline available in github (https://github.com/Xilinx/ml-suite/blob/master/examples/deployment_modes/mp_classify.py) Streamlined multi-process pipeline using
    0 码力 | 16 页 | 3.35 MB | 5 月前
    3
  • pdf文档 1_丁来强_开源AIOps数据中台搭建与Python的作用

    (BELK) • Beats + Elasticsearch + Logstash + Kibana • 接⼊入层还会搭配Kafka • 重要企业级组件都在商业组件X-Pack中 • 安全、ML、SQL、监控、告警、Transform等 • 提供⼀一个开源免费的APM⽅方案 Kafka + EBLK 引⼊队列,解决丢数据问题 部署、维护复杂度较为复杂 Elasticsearch核⼼能⼒ 阿⾥里里云⽇日志服务 ElasticSearch ML (X-Pack) Splunk AI增强 - 预测 • 对周期性趋势性数据进⾏行行预测 阿⾥里里云⽇日志服务 ElasticSearch ML (X-Pack) Splunk AI增强 - 根因分析 • 关联事件上下⽂文与相关链路路指标,提供根因辅助 阿⾥里里云⽇日志服务 ElasticSearch ML (X-Pack) Splunk 使⽤用开源⽅方案时需要考虑
    0 码力 | 48 页 | 17.54 MB | 1 年前
    3
  • pdf文档 Advanced SIMD Algorithms in Pictures

    Advanced SIMD Algorithms in Pictures name : mismatch | size : 10000 | type : char | group : apple_ml | padding : min 400 Advanced SIMD Algorithms in Pictures name : copy not 0s | size ; 10000 | type : int | group : apple_ml | padding : min sd:copy 1l6o0 -ever:algori Advanced SIMD Algorithms in Pictures name : copy not 0s | size ; 10000 | type : short | group : apple_ml | padding : min sd:copy ever:algoricopy_Isparse_output ee:algo::copy_f 45o0 4000 35oo
    0 码力 | 96 页 | 4.55 MB | 5 月前
    3
共 464 条
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 47
前往
页
相关搜索词
KubeConChinaMLLifecycleSolvingNimbytheUseofMachineLearning03ExperimentsReproducibilityandProjectsIntroductiontoScientificWritingWS202122Swift机器学习机器学习王巍UDFInClickHouse01StructurePapersLeveragingIstioforCreatingAPITestsLowEffortTestingMicroservicesXDNNTVMNov2019丁来开源AIOps数据中台搭建Python作用AdvancedSIMDAlgorithmsinPictures
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩