积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部后端开发(529)综合其他(299)Python(255)云计算&大数据(221)Weblate(211)数据库(159)VirtualBox(113)系统运维(88)Julia(87)Django(65)

语言

全部英语(1086)中文(简体)(168)中文(繁体)(20)英语(8)日语(4)西班牙语(2)法语(2)德语(1)意大利语(1)

格式

全部PDF文档 PDF(964)其他文档 其他(331)DOC文档 DOC(2)
 
本次搜索耗时 0.093 秒,为您找到相关结果约 1000 个.
  • 全部
  • 后端开发
  • 综合其他
  • Python
  • 云计算&大数据
  • Weblate
  • 数据库
  • VirtualBox
  • 系统运维
  • Julia
  • Django
  • 全部
  • 英语
  • 中文(简体)
  • 中文(繁体)
  • 英语
  • 日语
  • 西班牙语
  • 法语
  • 德语
  • 意大利语
  • 全部
  • PDF文档 PDF
  • 其他文档 其他
  • DOC文档 DOC
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 深度学习与PyTorch入门实战 - 18.2 LOSS及其梯度

    LOSS及其梯度 主讲人:龙良曲 Typical Loss ▪ Mean Squared Error ▪ Cross Entropy Loss ▪ binary ▪ multi-class ▪ +softmax ▪ Leave it to Logistic Regression Part MSE ▪ lo?? = σ[? − (?? + ?)]2 ▪ ?2 − ???? = ∇? = 2 σ ? − ?? ? ∗ ∇??(?) ∇? autograd.grad loss.backward Gradient API ▪ torch.autograd.grad(loss, [w1, w2,…]) ▪ [w1 grad, w2 grad…] ▪ loss.backward() ▪ w1.grad ▪ w2.grad Softmax ▪ soft version
    0 码力 | 14 页 | 989.18 KB | 1 年前
    3
  • pdf文档 keras tutorial

    ............................................................................................ 60 Loss ................................................................................................. to learn by training and finally do to prediction. This step requires us to choose loss function and Optimizer. loss function and Optimizer are used in learning phase to find the error (deviation from convolution layer, pooling layer, etc., Keras model and layer access Keras modules for activation function, loss function, regularization function, etc., Using Keras model, Keras Layer, and Keras modules, any ANN
    0 码力 | 98 页 | 1.57 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 3 - Learning Techniques

    layer at the bottom (right after the input layer). We compile the model with a sparse cross entropy loss function (discussed in chapter 2) and the adam optimizer. from tensorflow.keras import applications activation='softmax') ]) adam = optimizers.Adam(learning_rate=LEARNING_RATE) model.compile( optimizer=adam, loss='sparse_categorical_crossentropy', metrics=['accuracy']) return model model = create_model() model 968ms/step - loss: 4.5983 - accuracy: 0.3833 - val_loss: 1.8394 - val_accuracy: 0.6833 Epoch 2/100 43/43 [==============================] - 21s 493ms/step - loss: 0.1100 - accuracy: 0.9784 - val_loss: 2.3430
    0 码力 | 56 页 | 18.93 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 5 - Advanced Compression Techniques

    (OBD) paper approximate the saliency score using a second-derivative of the weights , where is the loss function, and is the candidate parameter for removal. Why do we want to compute the second-derivative derivative helps us compute the instantaneous slope of the loss function with respect to . gives us the rate at which the curvature of the loss function is changing with respect to and . The second derivative derivative gives us a clearer insight into how important might be to minimize the loss. Since computing pairwise second-derivatives for all and might be very expensive (even with just weights, this quickly
    0 码力 | 34 页 | 3.18 MB | 1 年前
    3
  • pdf文档 Oracle VM VirtualBox UserManual.pdf

    virtual system disks. As a result, this should not normally be done, since it can potentially cause data loss or an inconsistent state of the guest system on disk. 42 1 First Steps As an exception, if your created since the snapshot and all other file changes will be lost. In order to prevent such data loss while still making use of the snapshot feature, it is possible to add a second hard drive in write-through a USB device, it will be disconnected from the host without a proper shutdown. This may cause data loss. Note: Oracle Solaris hosts have a few known limitations regarding USB support. See Known Limitations
    0 码力 | 1186 页 | 5.10 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 2 - Compression Techniques

    either humans who will consume the information will not notice the loss of some information, or do not necessarily care about the loss in quality. Figure 2-2: On the left is a high quality image of a cat can be discarded, based on the tolerance for loss in quality. The JPEG and MP3 formats are able to achieve a 10-11x compression without any perceptible loss in quality. However, further compression might arrival? If so, what would be the ideal tradeoff on how much compression we want v/s how much quality loss can we tolerate? Let us slowly build up to that by exploring how quantization can help us. A Generic
    0 码力 | 33 页 | 1.96 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 4 - Efficient Architectures

    remain identical across the different features. 9 Implementation Detail: Using the cross entropy loss when $$N$$ is large can be computationally expensive due to the N-way softmax calculation. In the controls the number of unique words for which we learn embeddings. A small value for would result in loss of information because most of the words would get mapped to the OOV token. However, if is too large bow_model_w2v = get_bow_model(get_pretrained_embedding_layer(trainable=True)) bow_model_w2v.compile( loss='sparse_categorical_crossentropy', optimizer='adam', metrics=["accuracy"] ) bow_model_w2v.summary()
    0 码力 | 53 页 | 3.92 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 6 - Advanced Learning Techniques - Technical Review

    then we can simply add a few additional layers (known as the prediction head), use the appropriate loss function, and train the model with the labeled data for the task at hand. We can keep the original 6-3: Pre-training and Fine-tuning steps for BERT. Source: Develin et al. For BERT, the pre-training loss is the mean of the losses for the above two tasks. Similar to NLU, the pretext tasks in vision have Model(bert_inputs, output) bert_classifier.compile( optimizer=tf.keras.optimizers.Adam(learning_rate), loss='sparse_categorical_crossentropy', metrics=['accuracy'] ) if not keep_tfhub_weights: shuffle_
    0 码力 | 31 页 | 4.03 MB | 1 年前
    3
  • pdf文档 【PyTorch深度学习-龙龙老师】-测试版202112

    样本集合? = {(?(1), ?(1)),(?(2),?(2)),… , (?(?), ?(?))},然后找出一条“最好”的直线,使得它尽可能地 让所有采样点到该直线的误差(Error,或损失 Loss)之和最小。 ? = 1. ? + . (?(1), ?(1)) (?(2), ?(2)) 图 2.4 带观测误差的估计模型 也就是说,由于观测误差?的存在,当采集了多个数据点 np.array(points), lr) loss = mse(b, w, points) # 计算当前的均方差,用于监控训练进度 if step%50 == 0: # 打印误差和实时的 w,b 值 print(f"iteration:{step}, loss:{loss}, w:{w}, b:{b}") return [b, w] 次,返回最优 w*,b*和训练 Loss 的下降过程 [b, w]= gradient_descent(data, initial_b, initial_w, lr, num_iterations) loss = mse(b, w, data) # 计算最优数值解 w,b 上的均方差 print(f'Final loss:{loss}, w:{w}, b:{b}')
    0 码力 | 439 页 | 29.91 MB | 1 年前
    3
  • pdf文档 全连接神经网络实战. pytorch 版

    吧。有的人可能会疑惑输出为什么不用在 forward 里面定义 Softmax 或者 Cross-Entropy,这是因为这些东西是在 NeuralNetwork 之外定义: #损 失 函 数 为 交 叉 熵 loss_function = nn . CrossEntropyLoss () # 学 习 率 learning_rate = 1e−3 # 优 化 器 为 随 机 梯 度 下 降 optimizer train_dataloader , model , loss_function , optimizer ) test_loop ( test_dataloader , model , loss_function ) print ( ”Done ! ” ) 然后就是训练和测试的程序,训练一轮的程序如下: def train_loop ( dataloader , model , loss_function , optimizer pred = model (X) l o s s = loss_function ( pred , y) # Backpropagation optimizer . zero_grad () #梯 度 归0w l o s s . backward () optimizer . step () i f batch % 100 == 0: loss , current = l o s s . item
    0 码力 | 29 页 | 1.40 MB | 1 年前
    3
共 1000 条
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 100
前往
页
相关搜索词
深度学习PyTorch入门实战18.2LOSS及其梯度kerastutorialEfficientDeepLearningBookEDLChapterTechniquesAdvancedCompressionOracleVMVirtualBoxUserManualpdfArchitecturesTechnicalReview深度学习连接神经网络神经网神经网络pytorch
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩