积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部后端开发(1062)Python(324)Java(275)云计算&大数据(226)Spring(224)C++(140)数据库(135)VirtualBox(109)Julia(87)综合其他(82)

语言

全部英语(1423)中文(简体)(115)中文(繁体)(22)英语(7)日语(4)韩语(4)西班牙语(1)葡萄牙语(1)中文(繁体)(1)

格式

全部PDF文档 PDF(1218)其他文档 其他(319)TXT文档 TXT(35)PPT文档 PPT(7)DOC文档 DOC(2)
 
本次搜索耗时 0.026 秒,为您找到相关结果约 1000 个.
  • 全部
  • 后端开发
  • Python
  • Java
  • 云计算&大数据
  • Spring
  • C++
  • 数据库
  • VirtualBox
  • Julia
  • 综合其他
  • 全部
  • 英语
  • 中文(简体)
  • 中文(繁体)
  • 英语
  • 日语
  • 韩语
  • 西班牙语
  • 葡萄牙语
  • 中文(繁体)
  • 全部
  • PDF文档 PDF
  • 其他文档 其他
  • TXT文档 TXT
  • PPT文档 PPT
  • DOC文档 DOC
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 4 - Efficient Architectures

    Chapter 4 - Efficient Architectures “Any sufficiently advanced technology is indistinguishable from magic.” — Arthur C. Clarke, “Hazards of Prophecy: The Failure of Imagination” (1962) “Any technology gain orders of magnitude in terms of footprint or quality, we should consider employing suitable efficient architectures. The progress of deep learning is characterized by the phases of architectural breakthroughs deployment challenges. What good is a model that cannot be deployed in practical applications! Efficient Architectures aim to improve model deployability by proposing novel ways to reduce model footprint
    0 码力 | 53 页 | 3.92 MB | 1 年前
    3
  • pdf文档 Designing Fast and Efficient List-like Data Structures

    0 码力 | 29 页 | 852.61 KB | 5 月前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 7 - Automation

    or exceeded the contemporary state of the art models. These child networks were smaller and more efficient than the human designed models. However, the key contribution of NASNet was the focus on predicting
    0 码力 | 33 页 | 2.48 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 1 - Introduction

    Chapter 1 - Introduction to Efficient Deep Learning Welcome to the book! This chapter is a preview of what to expect in the book. We start off by providing an overview of the state of deep learning, its introduce core areas of efficiency techniques (compression techniques, learning techniques, automation, efficient models & layers, infrastructure). Our hope is that even if you just read this chapter, you would hands dirty with practical projects. With that being said, let’s start off on our journey to more efficient deep learning models. Introduction to Deep Learning Machine learning is being used in countless
    0 码力 | 21 页 | 3.17 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 3 - Learning Techniques

    recall or other performance metrics). We designate a new model training setup to be more sample efficient, if it achieves similar or better performance with fewer data samples when compared to the baseline same accuracy by seeing a smaller number of samples, that process would be sample efficient. Similarly, a sample efficient model training process requires fewer samples to achieve the same performance, which adopt this hypothetical sample efficient model training. Figure 3-1: The above plot demonstrates sample efficiency between two model training setups. The sample efficient model achieves about the same
    0 码力 | 56 页 | 18.93 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 2 - Compression Techniques

    of parameters, but this could hurt the quality. Compression techniques are used to achieve an efficient representation of one or more layers in a neural network with a possible quality trade off. The constrained environment like a mobile device. To summarize, compression techniques help to achieve an efficient representation of a layer or a collection of layers, such that it meets the desired tradeoff goals chosen to work with Tensorflow 2.0 (TF) because it has exhaustive support for building and deploying efficient models on devices ranging from TPUs to edge devices at the time of writing. However, we encourage
    0 码力 | 33 页 | 1.96 MB | 1 年前
    3
  • pdf文档 Leveraging the Power of C++ for Efficient Machine Learning on Embedded Devices

    Leveraging the power of C++ for efficient machine learning on embedded devices Adrian Stanciu adrian.stanciu.pub@gmail.com CppCon, 2023 1 / 50About me ◮ I am a software engineer from Romania ◮ I have data to make predictions 11 / 50Neural network (NN) 13 / 50Convolutional neural network (CNN) ◮ Efficient in image classification ◮ A convolutional layer can apply filters to detect: ◮ Edges ◮ Shapes ◮
    0 码力 | 51 页 | 1.78 MB | 5 月前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 5 - Advanced Compression Techniques

    kernels represents a channel. As you might notice, with such structured sparsity we can obtain efficient implementations which can drop unnecessary computation. In the case of this convolutional layer loss value. Han et al. in their seminal paper titled "Learning both Weights and Connections for Efficient Neural Networks8" proposed a three step approach for pruning. The three steps are: Train Connectivity preprint arXiv:1803.03635 (2018). 8 Han, Song, et al. "Learning both weights and connections for efficient neural network." Advances in neural information processing systems 28 (2015). 7 Dettmers, Tim,
    0 码力 | 34 页 | 3.18 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 6 - Advanced Learning Techniques - Technical Review

    quality you can achieve while retaining the same labeling costs i.e., training data-efficient (specifically, label efficient) models. We will describe the general principles of Self-Supervised learning which second limitation, training large models from scratch for every slightly different task is not efficient either. In many cases we might be limited by our training compute budget, so this approach is a which ensure that the model learns general representations of the inputs. Pre-training is data-efficient since we end up saving on the number of labels required to achieve the desired model quality on
    0 码力 | 31 页 | 4.03 MB | 1 年前
    3
  • pdf文档 DeepSeek-V2: A Strong, Economical, and Efficient Mixture-of-Experts Language Model

    DeepSeek-V2: A Strong, Economical, and Efficient Mixture-of-Experts Language Model DeepSeek-AI research@deepseek.com Abstract We present DeepSeek-V2, a strong Mixture-of-Experts (MoE) language model model characterized by economical training and efficient inference. It comprises 236B total parameters, of which 21B are activated for each token, and supports a context length of 128K tokens. DeepSeek-V2 innovative architectures including Multi-head Latent Attention (MLA) and DeepSeekMoE. MLA guarantees efficient inference through significantly compressing the Key-Value (KV) cache into a latent vector, while
    0 码力 | 52 页 | 1.23 MB | 1 年前
    3
共 1000 条
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 100
前往
页
相关搜索词
EfficientDeepLearningBookEDLChapterArchitecturesDesigningFastandListlikeDataStructuresAutomationIntroductionTechniquesCompressionLeveragingthePowerofC++forMachineonEmbeddedDevicesAdvancedTechnicalReviewDeepSeekV2StrongEconomicalMixtureExpertsLanguageModel
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩