积分充值
 首页
前端开发
AngularDartElectronFlutterHTML/CSSJavaScriptReactSvelteTypeScriptVue.js构建工具
后端开发
.NetC#C++C语言DenoffmpegGoIdrisJavaJuliaKotlinLeanMakefilenimNode.jsPascalPHPPythonRISC-VRubyRustSwiftUML其它语言区块链开发测试微服务敏捷开发架构设计汇编语言
数据库
Apache DorisApache HBaseCassandraClickHouseFirebirdGreenplumMongoDBMySQLPieCloudDBPostgreSQLRedisSQLSQLiteTiDBVitess数据库中间件数据库工具数据库设计
系统运维
AndroidDevOpshttpdJenkinsLinuxPrometheusTraefikZabbix存储网络与安全
云计算&大数据
Apache APISIXApache FlinkApache KarafApache KyuubiApache OzonedaprDockerHadoopHarborIstioKubernetesOpenShiftPandasrancherRocketMQServerlessService MeshVirtualBoxVMWare云原生CNCF机器学习边缘计算
综合其他
BlenderGIMPKiCadKritaWeblate产品与服务人工智能亿图数据可视化版本控制笔试面试
文库资料
前端
AngularAnt DesignBabelBootstrapChart.jsCSS3EchartsElectronHighchartsHTML/CSSHTML5JavaScriptJerryScriptJestReactSassTypeScriptVue前端工具小程序
后端
.NETApacheC/C++C#CMakeCrystalDartDenoDjangoDubboErlangFastifyFlaskGinGoGoFrameGuzzleIrisJavaJuliaLispLLVMLuaMatplotlibMicronautnimNode.jsPerlPHPPythonQtRPCRubyRustR语言ScalaShellVlangwasmYewZephirZig算法
移动端
AndroidAPP工具FlutterFramework7HarmonyHippyIoniciOSkotlinNativeObject-CPWAReactSwiftuni-appWeex
数据库
ApacheArangoDBCassandraClickHouseCouchDBCrateDBDB2DocumentDBDorisDragonflyDBEdgeDBetcdFirebirdGaussDBGraphGreenPlumHStreamDBHugeGraphimmudbIndexedDBInfluxDBIoTDBKey-ValueKitDBLevelDBM3DBMatrixOneMilvusMongoDBMySQLNavicatNebulaNewSQLNoSQLOceanBaseOpenTSDBOracleOrientDBPostgreSQLPrestoDBQuestDBRedisRocksDBSequoiaDBServerSkytableSQLSQLiteTiDBTiKVTimescaleDBYugabyteDB关系型数据库数据库数据库ORM数据库中间件数据库工具时序数据库
云计算&大数据
ActiveMQAerakiAgentAlluxioAntreaApacheApache APISIXAPISIXBFEBitBookKeeperChaosChoerodonCiliumCloudStackConsulDaprDataEaseDC/OSDockerDrillDruidElasticJobElasticSearchEnvoyErdaFlinkFluentGrafanaHadoopHarborHelmHudiInLongKafkaKnativeKongKubeCubeKubeEdgeKubeflowKubeOperatorKubernetesKubeSphereKubeVelaKumaKylinLibcloudLinkerdLonghornMeiliSearchMeshNacosNATSOKDOpenOpenEBSOpenKruiseOpenPitrixOpenSearchOpenStackOpenTracingOzonePaddlePaddlePolicyPulsarPyTorchRainbondRancherRediSearchScikit-learnServerlessShardingSphereShenYuSparkStormSupersetXuperChainZadig云原生CNCF人工智能区块链数据挖掘机器学习深度学习算法工程边缘计算
UI&美工&设计
BlenderKritaSketchUI设计
网络&系统&运维
AnsibleApacheAWKCeleryCephCI/CDCurveDevOpsGoCDHAProxyIstioJenkinsJumpServerLinuxMacNginxOpenRestyPrometheusServertraefikTrafficUnixWindowsZabbixZipkin安全防护系统内核网络运维监控
综合其它
文章资讯
 上传文档  发布文章  登录账户
IT文库
  • 综合
  • 文档
  • 文章

无数据

分类

全部后端开发(376)云计算&大数据(179)数据库(151)VirtualBox(89)Julia(87)Python(56)系统运维(52)综合其他(49)数据库工具(49)区块链(46)

语言

全部英语(671)中文(简体)(91)中文(繁体)(21)英语(8)日语(3)德语(2)法语(2)韩语(2)[zh](1)

格式

全部PDF文档 PDF(657)其他文档 其他(138)TXT文档 TXT(10)DOC文档 DOC(1)PPT文档 PPT(1)
 
本次搜索耗时 0.023 秒,为您找到相关结果约 807 个.
  • 全部
  • 后端开发
  • 云计算&大数据
  • 数据库
  • VirtualBox
  • Julia
  • Python
  • 系统运维
  • 综合其他
  • 数据库工具
  • 区块链
  • 全部
  • 英语
  • 中文(简体)
  • 中文(繁体)
  • 英语
  • 日语
  • 德语
  • 法语
  • 韩语
  • [zh]
  • 全部
  • PDF文档 PDF
  • 其他文档 其他
  • TXT文档 TXT
  • DOC文档 DOC
  • PPT文档 PPT
  • 默认排序
  • 最新排序
  • 页数排序
  • 大小排序
  • 全部时间
  • 最近一天
  • 最近一周
  • 最近一个月
  • 最近三个月
  • 最近半年
  • 最近一年
  • pdf文档 Boosting Software Efficiency

    0 码力 | 180 页 | 1.65 MB | 5 月前
    3
  • pdf文档 Balancing Efficiency and Flexibility: Cost of Abstractions in Embedded Systems

    0 码力 | 75 页 | 2.12 MB | 5 月前
    3
  • pdf文档 HUAWEI CLOUD Microservice Tool Improves Development Efficiency

    HUAWEI CLOUD Microservice Tool Improves Development Efficiency Department: Application Platform Service Author: Wang Qijun Date: 2019-09-20 Security Level: Contents 1. Tool for Splitting Monolithic Process-level Overall availability Low High Continuous evolution Difficult Easy Communication efficiency Low High Technology stack selection Restricted Flexible Scalable Restricted Flexible Reusability verification Tool for Splitting Monolithic Applications into Microservices Improves Development Efficiency Supported processes Methodology • ThoughtWorks 5 Steps and 1 Phase • DDD aggregation • Event
    0 码力 | 14 页 | 795.42 KB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 1 - Introduction

    rapid growth. We will establish our motivation behind seeking efficiency in deep learning models. We will also introduce core areas of efficiency techniques (compression techniques, learning techniques, automation Our hope is that even if you just read this chapter, you would be able to appreciate why we need efficiency in deep learning models today, how to think about it in terms of metrics that you care about, and models is rate-limited by their efficiency. While efficiency can be an overloaded term, let us investigate two primary aspects: Training Efficiency Training Efficiency involves benchmarking the model
    0 码力 | 21 页 | 3.17 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 3 - Learning Techniques

    bring significant efficiency gains during the training phase, which is the focus of this chapter. We start this chapter with an introduction to sample efficiency and label efficiency, the two criteria Our journey of learning techniques also continues in the later chapters. Learning Techniques and Efficiency Data Augmentation and Distillation are widely different learning techniques. While data augmentation breadth as efficiency? To answer this question, let’s break down the two prominent ways to benchmark the model in the training phase namely sample efficiency and label efficiency. Sample Efficiency Sample
    0 码力 | 56 页 | 18.93 MB | 1 年前
    3
  • pdf文档 openEuler OS Technical Whitepaper Innovation Projects (June, 2023)

    deployment tuning assistant that significantly reduces deployment costs and improves optimization efficiency. Project Introduction HPCRunner is composed of two parts: HPC dependency management and HPC application applications. HPC Deployment Tuning Assistant: HPCRunner Objectives 20%↓ deployment cost 20%↑ tuning efficiency Unified deployment Flexible operation Template-based tuning One-click deployment One-click compilation communication library, and porting and tuning tool chain, significantly improving the application running efficiency of the Kunpeng platform. Repositories https://gitee.com/openeuler/hpcrunner Features • HPCRunner
    0 码力 | 116 页 | 3.16 MB | 1 年前
    3
  • pdf文档 《Efficient Deep Learning Book》[EDL] Chapter 6 - Advanced Learning Techniques - Technical Review

    quality with a small number of labels. As we described in chapter 3’s ‘Learning Techniques and Efficiency’ section, labeling of training data is an expensive undertaking. Factoring in the costs of training a new task: 1. Data Efficiency: It relies heavily on labeled data, and hence achieving a high performance on a new task requires a large number of labels. 2. Compute Efficiency: Training for new tasks Model reuse by itself also is a powerful attribute of this scheme, and lends itself to compute efficiency since only have to train the model on a small number of examples, saving training time compute
    0 码力 | 31 页 | 4.03 MB | 1 年前
    3
  • pdf文档 Trends Artificial Intelligence

    JP Morgan End-to-End AI Modernization – 2023-2025E, per JP Morgan We have high hopes for the efficiency gains we might get [from AI]… …Certain key subsets of the users tell us they are gaining several alerts. It leverages machine learning to improve decision-making at the restaurant level, enhancing efficiency, reducing waste, and supporting staff productivity. ‘Traditional’ Enterprise AI Adoption = Rising – one that builds on recent exponential gains in model scale, training data, and computational efficiency. Timelines for AGI remain uncertain, but expert expectations have shifted forward meaningfully
    0 码力 | 340 页 | 12.14 MB | 4 月前
    3
  • pdf文档 DeepSeek-V2: A Strong, Economical, and Efficient Mixture-of-Experts Language Model

    costs and inference efficiency of DeepSeek 67B (Dense) and DeepSeek-V2. Contents 1 Introduction 4 2 Architecture 6 2.1 Multi-Head Latent Attention: Boosting Inference Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.2.3 Training and Inference Efficiency . . . . . . . . . . . . . . . . . . . . . . . . 16 4 Alignment 16 4.1 Supervised Fine-Tuning Multi-Head Attention (MHA) (Vaswani et al., 2017) poses a significant obstacle to the inference efficiency of LLMs. Various approaches have been explored to address this issue, including Grouped-Query Attention
    0 码力 | 52 页 | 1.23 MB | 1 年前
    3
  • pdf文档 Session Types in C++

    18What are types used for in programming? • Types are used for: • Abstraction • Documentation • Efficiency • Expressivity • Detecting errors • Safety 19What are types used for in programming? • Types Documentation • Efficiency • Carefully chosen type can lead to more efficient code. 22What are types used for in programming? • Types are used for: • Abstraction • Documentation • Efficiency • Expressivity 23What are types used for in programming? • Types are used for: • Abstraction • Documentation • Efficiency • Expressivity • Detecting errors • Doing something (by accident) that does not “fit” the type
    0 码力 | 89 页 | 1.55 MB | 5 月前
    3
共 807 条
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 81
前往
页
相关搜索词
BoostingSoftwareEfficiencyBalancingandFlexibilityCostofAbstractionsinEmbeddedSystemsHUAWEICLOUDMicroserviceToolImprovesDevelopmentEfficientDeepLearningBookEDLChapterIntroductionTechniquesopenEulerOSTechnicalWhitepaperInnovationProjectsJune2023AdvancedReviewTrendsArtificialIntelligenceDeepSeekV2StrongEconomicalMixtureExpertsLanguageModelSessionTypesC++
IT文库
关于我们 文库协议 联系我们 意见反馈 免责声明
本站文档数据由用户上传或本站整理自互联网,不以营利为目的,供所有人免费下载和学习使用。如侵犯您的权益,请联系我们进行删除。
IT文库 ©1024 - 2025 | 站点地图
Powered By MOREDOC AI v3.3.0-beta.70
  • 关注我们的公众号【刻舟求荐】,给您不一样的精彩
    关注我们的公众号【刻舟求荐】,给您不一样的精彩